ToF Denoising — Quick Start Guide

Frank Lenzen and Henrik Schafer

Heidelberg Collaboratory for Image Processing (HCI),
Heidelberg University, Germany
and
Intel Visual Computing Institute,
Saarland University, Germany

frank.lenzen@iwr.uni-heidelberg.de

Software version 4,/2016

June 15, 2016

1 License
Copyright 2011-2016 Frank Lenzen, Henrik Schaefer

This document is part of the ToF denoising software
package.

The ToF denoising software package is free software:
you can redistribute it and/or modify it under the
terms of the GNU General Public License as published
by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.

The ToF denoising software package is distributed
in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General
Public License along with the ToF denoising software
package. If not, see http://www.gnu.org/licenses/|.

http://www.gnu.org/licenses/

2 General Notes

The algorithm implemented in this software package is described in [5]. In case
that you use the output of this software in a publication, we kindly ask to cite
the above paper.

Our algorithm is designed for and tested with the PMD CamCube 3. In par-
ticular, the Shadow Removal Step (see Section [5)) assumes the specific lighting
characteristic of the PMD CamCube. In case of other camera brands/models,
we suggest to not use the shadow-removal (disabled by default) or change the
properties directly in the source code.

This quick start guide for the ToF denoising software assumes Linux as the
installed OS. The described installation routine was tested with Ubuntu 12.04,
13.04, 15.10 and 16.04.

After unzipping the archive, the following directory tree is created (referring to
the root directory, where the file is unzipped, as ./):

directory | content

./src/ source files and CMakeLists.txt
./docu/ | this document
./bin/ empty, used to store executables after compilation

.Jtools/ | m-file to read raw data, cimg-viewer, conversion tool (see Section
.Jcalib/ | generic calibration file (cf. Section .

For further reading on the principle of ToF cameras and denoising ToF data,
we refer to [2] 3].

3 Requirements
Required packages (installed either globally or locally):

1. cmake, (optional: cmake-gui)
Ubuntu package: cmake

2. hdf5
Ubuntu package: libhdf5-dev (or libhdf5-serial-dev)

3. Vigra with HDF5 support, website: https://ukoethe.github.io/vigra/,
github: https://github.com/ukoethe/vigra
Hints:
e can be installed locally (build directory) or globally ('make install’)
e check correct paths for hdf5 with cmake-gui

4. openCV, website: http://opencv.org/
Ubuntu packages: libopencv-dev python-opencv

5. CIngI, website: http://cimg.sourceforge.net/,
Ubuntu package: cimg-dev

Irequires the X11 and pthread libraries, which should be installed by default.

https://ukoethe.github.io/vigra/
https://github.com/ukoethe/vigra
http://opencv.org/
http://cimg.sourceforge.net/

4 Installation

1. Modify the file ./src/CMakeLists.txt: if you use locally installed pack-
ages, please set the correct paths in Vigra_DIR (build directory) , Vi-
gra_Root _DIR (parent folder to build), CIMG_DIR (path to CImg.h) and
OPENCV_DIR (main directory). In case of globally installed packages the
respective path is not be required.

2. Create directory build in ./src.

3. In ./sre/build, call ecmake .. (including dots !) and then make. This
creates the executable tof-denoising in ./bin.

Trouble shooting:

Vigra: Has Vigra been built/installed successfully? Is hdf5 support enabled
(check with cmake-gui ..)?

OpenCYV (local inst.): Has openCV been built successfully?

5 Main Parts of the Algorithm

The algorithm implemented in tof denoising requires the depth and intensity
images acquired with a ToF camera, stored as cimg-images (http://cimg.
sourceforge.net/). The tool convert2cimg can be used to convert standard
image formats to cimg, see Section

As additional input, the shadow removal step (see below) requires a calibra-
tion file.

The algorithm consists of the following main steps:
1. EGDE-1: detection of definite edges in the depth image.
2. EGDE-2: detection of shadow casting edges in the depth image.
3. EGDE-3: detection of edges in the intensity image.

4. ShadowRemoval (optional, PMD CamCube): removes intensity edges caused

by shadows; requires a calibration file. A generic calibration file generic_calib.hd

is provided with this package.
5. TextureRemoval (optional): removes intensity edges caused by texture.

6. Denoising: Uses first- and second-order anisotropic total variation to re-
move noise. The anisotropy is determined based on the edge information
retrieved in the previous steps.

As mentioned before, the Shadow Removal Step makes use of specific light-
ing property of the PMD CamCube. In case of other camera brands/models,
we suggest to not use the shadow-removal (disabled by default) or change the
properties directly in the source code.

For details on the algorithm we refer to [5].

http://cimg.sourceforge.net/
http://cimg.sourceforge.net/

6 Parameter File

tof_denoising requires one parameter file per ToF data set, in which all param-
eters (incl. input and output files) are stored. The file ending is assumed to be
.par. The program call is ./bin/tof-denoising parameterfile.par.

The parameters in the parameter file are organized in sections, with section
names given in square brackets. Each section contains parameter entries con-
sisting of a parameter name, a colon plus space and a parameter value (name:
value). One entry per line is assumed; the rest of each line is ignored. The
parameter name is assumed to be unique in each section. For some parameters,
default values (see below) are available, which are used if no entry is provided

in the parameter file.

The following table shortly describes the individual parameters:

Parameter name

Type \ Default \ Description

[Input]
intensity: string | N/A name of existing cimg-file (float values)
depth: string | N/A name of existing cimg-file (float values)
[Output]

output_file: string | N/A name of output file (overwriting), formats are
.dat, .cimg and the standard vigra image for-
mat

additional_output: yes/no | no use yes’ for additional output files (png/cimg)

path_additional_output: | string ./ sub-directory to store additional output

[EDGE-1]

gwidth: int 5 width of Gaussian for gradient and structure
tensor calculation, only odd values allowed

sigma: float 0.8 sigma of the same Gaussian

upsampling 0/1 1 perform upsampling during gradient calcula-
tion

hggaussangle float 0.5 angle of the ”hourglass” shaped Gaussian:
O=very thin, the larger, the less adaptive the
structure tensor is.

Ithreshold: float 0.01 lower threshold for Canny

uthreshold: float 0.1 higher threshold for Canny, larger than
Ithreshold

adaptiveness: int 0 adapt thresholds to intensity (70” = off, 71”7
= linear, ”2” = squareroot, ”-1” = reciprocal,
7-2” = negative)

edgelength: int 5 minimum length of an edge

curvel: float 50.0 allowed max angle between edge direction of
two adjacent pixels in deg

curve2: float 80.0 allowed max angle between edge direction and
adjacent edge pixel in deg

CONTINUED ON NEXT PAGE

Parameter name | Type | Default \ Description
[EDGE-2]
same as in [EDGE-1]
[EDGE-3]
same as in [EDGE-1]
[ShadowRemoval]
remove_shadows: yes/no | no
calibrationfile: string | default_calib.h5 | hdf5 file containing a camera matrix cma-
triz. Used only if remove_shadows:=yes
[TextureRemoval]
remove_textures: yes/no | no if yes, the following parameters should be pro-
vided.
threshold: float 0 depth threshold above which edges are not re-
moved
thresholdg;: float 0 gradient threshold above which edges are not
removed
neighborhood: int 0 width of neighborhood in pixels on either side
of the edge
[Denoising]
steps: int 1000 iteration steps. 1000 should suffice and can be
reduced in case of weak noise to save compu-
tation time.
alpha: float 0.01 reduced smoothing across edges, should be 1-2
orders less than beta.
beta: float 0.1 smoothing strength for first order TV (norm
of gradient), depends on noise level.
gamma float 0.1 smoothing strength for second order TV. Use
a small value to prevent stair-casing. Use 0 to
restrict to first order TV.
weight_factor: float 3.0 choose a larger parameter to increase the
weight for the depth data in regions with low
intensity. Decrease the value if there are re-
gions with low intensity and high noise, which
is not smoothed out.

Setting the thresholds for EGDE-*:

For each edge image a provisional

result is given by the files edge *_rawfile.cimg (provided that in the parameter file
additional_output: yes is set). These files show the results of the edge detection
before the hysteresis step. Edge pixels above the lower threshold are set to 1,
pixels above the higher threshold are set to 2. This data can be used to set the
thresholds of the different edge detections to appropriate values.

For instance, all edges with no pixel above the higher threshold are removed.

7 Example Data Sets

We provide two data sets hcibor and shape in a separate zip-file. Each data set
consists of intensity and depth data stored in .cimg files, a calibration file and
a parameter file. Note that these data are not part of the software package and
thus do not fall under the GPL license. (For details, see separate license file).

To process these data, enter the directory containing the parameter and data

files and, from this directory, call (path-to-software) /tof-denoising parameter-
file.par. For example for the hcibor data, assuming that they are located in
./data/hcibox, enter this subdirectory and call ../.. /bin/tof-denoising hciboz.par.

In case that you use one of these data sets in a publication, we kindly ask you
to cite [4] (hcibox) or [5] (shape), respectively.

8 Tools

We provide some additional tools to display /postprocess the results of tof_denoising:

Matlab routine read_dat to read .dat-files: data=read_dat(filename); can
be used in MATLAB to read a .dat-file produced by tof_denoising (use out-
put_file: name.dat in the parameter file). Upon read success this routine
returns a matlab matrix (2D, double values).

Simple viewer to display cimg files:
Usage: cimg_viewer cimgfile [minvalue mazvalue].
The data are clipped to the range [minvalue maxvalue], if these optional
parameters are provided. With an open display the image can be en-
larged /shrunk by pressing enter or del, respectively. Press r to re-load
the cimg-file. To quit, just close the display.

Tool to convert standard images to cimg:
Usage: convert2cimg input-file cimg-file.
The input image is converted into a one-channel cimg-image with float
values. Input image formats are those supported by the Clmg-library.
Color images are averaged over all three channels. Note that the ending
of the output file is not checked to match .cimg.

Compilation of cimg_viewer and convert2cimg: create a build directory in tools/,
and, inside, call emake .. and make. The executables are stored in ./bin.

Acknowledgements

This work was co-funded by the Intel Visual Computing Institute, Saarbriicken,
Germany. The content is under the sole responsibility of the authors.

References

[1] M. Grzegorzek, C. Theobalt, R. Koch, and A. Kolb, editors. Time-of-Flight
and Depth Imaging: Sensors, Algorithms, and Applications, volume 8200 of
LNCS. Springer, 2013.

[2] D. Lefloch, R. Nair, F. Lenzen, H. Schafer, L. Streeter, M. J. Cree, R. Koch,
and A. Kolb. Technical foundation and calibration methods for time-of-flight
cameras. In Grzegorzek et al. [1], pages 3-24.

[3] F. Lenzen, H. Schéfer, and C. S. Garbe. Denoising time-of-flight data with
adaptive total variation. Advances in Visual Computing, pages 337-346,
2011.

[4] R. Nair, S. Meister, M. Lambers, M. Balda, H. Hoffmann, A. Kolb, D. Kon-
dermann, and B. Jahne. Ground Truth for Evaluating Time of Flight Imag-
ing, chapter 4. Volume 8200 of Grzegorzek et al. [I], 2013. to appear.

[5] H. Schéfer, F. Lenzen, and C. S. Garbe. Depth and intensity based edge
detection in time-of-flight images. In Proceedings of 3DV. IEEE, 2013.

	License
	General Notes
	Requirements
	Installation
	Main Parts of the Algorithm
	Parameter File
	Example Data Sets
	Tools

