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Abstract. For denoising depth maps from time-of-flight (ToF) cameras
we propose an adaptive total variation based approach of first and second
order. This approach allows us to take into account the geometric prop-
erties of the depth data, such as edges and slopes. To steer adaptivity
we utilize a special kind of structure tensor based on both the amplitude
and phase of the recorded ToF signal. A comparison to state-of-the-art
denoising methods shows the advantages of our approach.
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1 Introduction

In the last few years time-of-flight (ToF) cameras have become popular in order
to retrieve depth information from 3D scenes.

The basic idea of ToF cameras is to actively illuminate the scene by a mod-
ulated infrared (IR) signal and calculate depth information from the phase shift
between the emitted and recorded signal [17,20]. As an example, Fig. 1 shows
a depth map (right) taken with a PMD Cam Cube 3, together with the IR am-
plitude of the recorded signal (middle) and a standard RGB image providing
an overview over the scene (left). ToF recordings suffer from some drawbacks.

sl

Fig. 1. Test scene and data set. Left: RGB image of test scene. Middle: amplitude of
signal. Right: depth data with colorbar.
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One issue is the presence of significant noise in the depth data, as can be seen
in Fig. 1 right. Second, the output of ToF cameras often is of low resolution.
Typical resolutions are in the range up to 200 x 200 pixels (PMD Cam Cube 3).
Finally, if dynamic scenes are recorded, the output suffers from motion blur.

In this paper, we tackle the problem of noise contained in ToF data. The
task is to reconstruct a noise-free and accurate depth map. This problem has
already been addressed in literature. Denoising approaches for ToF data are e.g.
presented in [15,10,7,6,11,1]. These approaches are mainly based on bilateral
filtering or wavelet techniques, combined with appropriate noise models. In order
to regularize the denoising problem, i.e. prescribing smoothness of the result,
these models (except for the clustering approach in [15]) do not assume explicit
geometric structures in the depth map such as regular edges or piecewise planar
surfaces. In contrast, we present here a variational denoising approach based on
adaptive total variation (TV), which allows to take into account such geometric
properties and thus to reconstruct edges and slopes with sufficient regularity.

Denoising with TV methods has been intensively studied in literature. For the
seminal work we refer to [18]; adaptive TV variants are described e.g. in [22,9,
14]; higher order TV approaches are considered in [2, 21, 19,4]. As an alternative,
non-local techniques have been proposed, e.g. the nonlocal-means approach in
[3] and non-local TV regularization [12].

Contribution: We present a total variation (T'V) based denoising approach espe-
cially tailored for smoothing depth maps. This variational approach uses penal-
ization terms, which locally adapt to the image content and which are well suited
for preserving edges and linear slopes in depth maps. Such slopes for example
can be expected in depth maps of piecewise planar objects. Thus, our approach
is motivated by geometrical considerations.

Organisation of the paper: We start with a description of the data acquisition
and transformation, cf. Sect. 2. Our denoising approach is presented in Sect. 3.
A comparison to state-of-the-art methods in Sect. 4 shows the advantages of our
approach. We conclude the paper with Sect. 5

2 Data Acquisition & Transformation

The data used for the experiments is acquired with a PMD CamCube 3 with
200 x 200 pixels, a continuously modulated light source and suppression of back-
ground illumination. The camera records 8 images per shot, correlated with the
modulation signal at 4 different phase shifts. From these 8 images, the phase
shift ¢ and the amplitude A of the reflected light can be calculated for each
pixel, as described in [17]:
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While the phase shift ¢ of a pixel corresponds to the distance from the scene
to the camera, the desired depth map d should contain the distance of scene
and camera plane, measured parallel to the optical axis. Therefore, the phase
shift has to be transformed according to d; j := ¢; j cos oy j, where « is the angle
included by the optical axis and the current pixel.

Remark 1. In this paper, we decided to retain the original xy-grid of the camera
layout and to apply only a transformation to the depth data (z-coordinate), with
the disadvantage that the geometry of the scene is not optimally represented.
Future work will focus on an exact handling of the 3D geometry of the data.

3 Denoising Method

In the following, we describe our approach to denoise the depth map d obtained
as described in Sect. 2. Our ansatz is based on the variational problem

in F(u) := mi (wg s — di )2 ) 1

Jfin F(u) = min i (uig = dig)” + ¢(u) &
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Here w; ; are local weights on the data term in order to incorporate data feasi-

bility. These weights are determined by considering an appropriate noise model,

see Sect. 3.1. The regularization term ¢(u) is considered to be of the form

P(u) = ZSUP{UiT,jLi,j(U) |vij €Cij}t, (2)
4,7

where L; ; : R™™ — R® are local finite difference operators and C; ; C R are
closed convex constraint sets. The general concept in (2) allows for a locally
adaptive Li-penalization of derivatives of u, provided by L; ju, where the adap-
tivity is determined by the size and shape of the constraints set C; ;. This concept
also covers standard TV regularization approaches.

3.1 Weighting of the Data Term

We follow the noise model presented in [8], according to which the noise ¢; ; at
each pixel (i, j) is independent Gaussian distributed. The variance o, ; depends
on the amplitude A; ; of the recorded IR signal, i.e. 07; = 03/2A47; for some
constant factor g > 0. The recorded depth map then is given as d; ; = u; j +€; ;

with noise-free data u. We apply a maximum-a-posteriori (MAP) estimator:

max p(uld) = max p(dju)p(u), 3)

wERN XM uERn XM

where p(u|d) is the conditional probability of u given d, p(d|u) is the conditional
probability of d given u and p(u) is the (unconditioned) probability of u. p(u) is
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commonly assumed to be known a priorily, thus p(u) is also referred to as prior
on u. From the Gaussian noise model we find that

A2

1 = i —da 512
p(dlu) = o [Ie - ; (4)
0,J

with some constant ¢; > 0. For the prior on u, we consider at this point the
general form p(u) = ée’d’(") for some suitable ¢ and a constant co > O.
With these settings and using the fact that problem (3) is equivalent to solving
min,, — log p(u|d), we end up with

A2
min —3*|u — d|* + ¢(u), ()

2
99

where additive constant terms have been omitted. Comparing (5) with (1), we
find that the weights w; ; in (1) have to be chosen as w; j := A7 ; /0§,

3.2 Edge Detection

To supply edge information for the proposed method, we use the enhanced struc-
ture tensor proposed in [13]. While calculating the derivatives for the structure
tensor, the data is upsampled by a factor 2, to prevent information loss.
After obtaining the structure tensor, smoothed with an ordinary Gaussian, it is
recalculated but with an hourglass-shaped Gaussian filter, aligned to the previ-
ously detected edges. This prevents too much smoothing in cross-edge direction,
to distinguish very close parallel edges. We use all available data, i.e. structure
tensors for both A and d. Then the sum of both is evaluated to acquire the
eigenvectors. This way, the normal orientation of the edges (eigenvectors v; ;)
and a value for their distinctness (differences of eigenvalues s; ;) are obtained.
To reduce the noise in the edge image, a smoothing function is applied.
Weighted with the ¢; distance, the surrounding 24 pixels are checked for aligned
edges by utilizing the inner product of the two relevant vectors. A Gaussian-like
function is used to distinguish better between (almost) aligned and unaligned

edges: s7 (A, d) = - D (B D) EN m’ exp (— (1 — v} ~vk7lH) / (202)).

Finally, to have matching edge and depth data, the edge images are down-
sampled to the original size.

3.3 Regularizer ¢(u)

Our regularization is based on discrete derivatives of first and second order,
using finite differences on the pixel grid. Let D,u, Dyu denote right-sided finite
differences for the first, and Dy,u, Dyyu, Dyyu central finite differences for the
second order, respectively. At the boundary of the pixel grid, u is constantly
extended, i.e. we assume (discrete) homogeneous Neumann boundary conditions.
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We are aiming at an anisotropic total variation (TV) penalization of u
(cf. [9]), coupled with an isotropic L!'-penalization of the Hessian of u (cf. [19]),

Dmuij T Dxui j Dzzui’j
9(u) = Z(%‘ (Dyu{j) Gij (Dyu{j> + (L =ciy)vig ||| Dovris
i\ ' ' Doy,

where
— ¢;,; € [0,1] provide a local weighting of the first and second order terms,
— matrix G j; = af jui jv]; + 87 ;(Id —v; jol;) for a given unit vector v; ; € R?
defines the anisotropy for the first order, with o;; > 0, 3; ; > 0 being the

local regularization parameters parallel and orthogonal to v; ;, respectively,

— the term
Dyzu
Dyyu
Dgyu

is the Frobenius norm of the discrete Hessian of u, and
— 7i,j > 0 defines the local regularization parameter for the second order term.
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Fig. 2. Top left: standard TV. Top right: standard TV with weights. Bottom left:
anisotropic TV. Bottom right: anisotropic TV with second order terms. By consider-
ing a weighted data term, we are able to cope with the local varying noise variance.
Anisotropic TV ensures a better preservation of edges, while the higher order penal-
ization term regularizes the slopes.
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Fig. 3. Left: investigated close-ups in first data set. Middle: second test scene.
Right: cross section (black line) through second data set.

Remark 2. We note that the regularization term ¢(u) in (6) is of the form (2),
as can be seen by defining L; ;(u) := (Dyui j, Dyt j, Dagtti j, Dyyti j, Daytii ;)T
and the constraint set Ci,j = Ci,j (Oéi,j, ,Bi,j, Y5 Ci,js Ui7j) CR? by

Cla, B,7,¢,v) := {p eR’:

T P+ gl = B 1 < 5 (B < a-e2y

Remark 3. For denoising ToF data, we propose to use v; j = v; ;(u) and s} ; (A, u)
defined as in Sect. 3.2. Moreover, we use ¢; ; := g(s} ;(u)) for some continuous
mapping g : [0,1] — [0,1] and fixed «; j, B; J1 Mg > 0. In case that s} ; = 0, i.e. no
edge is present at pixel (4, j), and thus v; ; is not containing useful information,
we additionally assume «; ; = 3; ;, leading to an isotropic TV penalization.
Note that we choose v; j(u) and s ;(A,u) depending on u instead of the
noisy data d. In particular, the adaptivity of the regularizer is determined by
the unknown solution w. In this case existence theory becomes more involved.
Existence of a minimizer of F'(u) can be shown for w; ; > 0, see [14, Prop. 1].

4 Experiments

Results of Proposed Method We demonstrate that the combination of noise
model, anisotropic TV and higher order term is necessary in order to obtain an
adequate reconstruction of the noise-free depth map. To this end, we consider
variants of TV denoising, which do not address all of these issues simultaneously.
First, we utilize the standard ROF model in [18], see Fig. 2, top left. Since
ROF assumes a constant noise variance, this method can not cope with the
spatially dependent noise variance. Accounting for the right noise model (see
Fig. 2, top right), the method is able to remove the noise completely. However,
both isotropic TV variants suffer from a loss of contrast, see for example Fig. 4,
top row, first and second image, where the right part of the polystyrene structure
is reconstructed with the wrong depth. The effect of loosing contrast is well
known in literature. Anisotropic TV, however, is able to preserve the contrast
(Fig. 4, top row) and, with additional higher order term, is able to regularly
reconstruct the slopes of the surfaces, see Fig. 4, bottom row.
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Input std. ROF ROF + weights  anisotropic anisotropic +
higher order

Fig. 4. Top: Edge region in the ToF image (contrast enhanced). Bottom: Slope region
in the ToF image. Anisotropic TV combined with higher order terms leads to a better
preservation of edges and contrast, while reconstructing slopes more regular.

Comparison with State-of-the-Art methods We compare the proposed ap-
proach with several state-of-the-art methods. First, we consider a cross-bilateral
filter comparable to [5], using both IR phase and amplitude. The cross-bilateral
filter extends the standard method by taking the intensity image into account
and uses both images to calculate the local filter kernels:

o d; i—dg 12 A; i—Ag |2

1 1 _\\(1.1)2—(2k.l)llz 1 ! 1,320;,:‘ 1 ! z,g%2k,z\

w; (k1) = —e o3 f =—e a4+ —c a .
norm o 204 204

Since a pixel is always similar to itself, we set w; ;(¢,j) = 0 before normalization,
to smooth single outliers (cf. [12]). As suggested in [24], we use three iterations
and as in [16] decrease o4 and o4 by the square root of the number of iterations.

In addition to bilateral filtering, we apply infimal convolution (IC) [4,21] (in
combination with a weighted data term) and the non-local (NL) means algorithm
[3] (using the publicly available implementation by Peyre?).

In Fig. 5 we present the results of these methods applied to the depth map
presented in Fig. 1. Because of the intensity image, the cross-bilateral filter
has quite sharp edges, but these edges often have a halo. In areas with very
low intensity and high noise, the cross-bilateral filter smooths better than its
standard version (as in [1,23]) would, due to the homogeneous dark areas in the
intensity image. However, cross-bilateral filtering does not compensate the false
depth data completely. Infimal convolution is able to almost reduce the noise
even in regions with strong variance. The NL-means algorithm has problems with
smoothing regions with strong noise. The proposed method is able to remove the
noise completely, while keeping the edges sharp.

We investigate the reconstruction of edges and slopes on a second data set,
see Fig. 3, where we focus on the cross section indicated by the black line.
The results of the above methods along this cross section are depicted in Fig. 6.
We compare each result with a depth map taken with a long exposure time

3 http://www.mathworks.com/matlabcentral /fileexchange/13619
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Fig. 5. Depth maps filtered with cross-bilateral filter (top left), IC (top right), NL-
means (bottom left) and proposed method (bottom right). The proposed method re-
moves noise even in regions of high noise variance, while preserving edges and slopes.

(thick gray line) and thus being more accurate than the original input data
(thin gray line). The proposed approach is able to reconstruct the slopes better
than NL-means. Moreover, the edges are reconstructed sharper as by the infimal
convolution or cross-bilateral approach, see e.g. the left part of the cross cut.
The quantitative comparison of these reconstructions, see Table 1, shows that
the reconstruction by the proposed method is most accurate.

‘ cross-bilateral ‘ NL-means ‘inﬁmal convolution ‘ proposed‘

0.036866 ‘ 0.036627 ‘ 0.039305 ‘ 0.033600 ‘

Table 1. ¢2-difference to high precision data obtained with long exposure time. The
proposed method shows the smallest deviation from this data.

5 Conclusion & Outlook

We have proposed an adaptive TV approach to denoise ToF data, where adaptiv-
ity is determined based on a extended structure tensor using the full ToF signal
(amplitude and phase). Our ansatz allows to regularize the depth map in view of
its geometric properties, e.g. edges and slopes. A comparison to state-of-the-art
methods shows that our approach better reconstructs the depth. In future work
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Fig. 6. Cross section through sample piece and comparison of cross-bilateral (top left),
IC (top right), NL-means (bottom left) and proposed method (bottom right). Each
plot shows the input data (thin gray), high precision data (thick gray) obtained with
long exposure time and the method under consideration (black). The proposed method
is able to reconstruct edges and slopes with high quality. In addition, a close-up of the
left part of the cross section is provided.

we will further improve the regularization in view of the true 3D geometry of
the data and we will perform a detailed evaluation using ground truth.
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