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1 HCI & IPA, Heidelberg University,
Speyerer Str. 6, 69115 Heidelberg, Germany
frank.lenzen@iwr.uni-heidelberg.de

{becker,lellmann,petra,schnoerr}@math.uni-heidelberg.de

http://hci.iwr.uni-heidelberg.de,
http://ipa.iwr.uni-heidelberg.de

2 Intel Visual Computing Institute, Saarland University,
Campus E2 1, 66123 Saarbrücken, Germany
http://www.intel-vci.uni-saarland.de

Abstract. We propose a generalization of the total variation (TV) mini-
mization method proposed by Rudin, Osher and Fatemi. This generaliza-
tion allows for adaptive regularization, which depends on the minimizer
itself. Existence theory is provided in the framework of quasi-variational
inequalities. We demonstrate the usability of our approach by considering
applications for image and movie denoising.
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1 Introduction

One of the most widely used methods for image denoising is total variation (TV)
minimization. The TV method proposed by Rudin, Osher and Fatemi in [13]
(ROF) consists in minimizing the functional

1

2
‖u− f‖2 + αTV(u), (1)

w.r.t. u over BV(Ω), Ω ⊂ R
d for given noisy data f . Here TV(u) is the to-

tal variation semi-norm and α is a regularization parameter. We consider the
formulation of the regularization term αTV(u) based on constraint sets:

αTV(u) = σC(u), C = divD, D = {p ∈ C∞
c (Ω;Rd) : ‖p(x)‖ ≤ α

}

, (2)

where σC is the support function of the set C and div is applied elementwise.
In this paper, we generalize the ROF functional (1) by introducing the de-

pendency C = C(u). This allows for variants of the TV method, where the set
C(u) locally adapts to the image content depending on the solution u itself.



In the literature, adaptive TV methods have been proposed e.g. in [6, 9], with
locally varying regularization parameter, and [1, 14, 15, 10], where anisotropic
regularization is steered by local structures. Except for [10], these methods gather
the required local information either in a preprocessing or as an additional un-
known of the variational problem, not depending on the minimizer itself. The
variational framework presented below differs from [10]; possible connections
will be explored in future work. Another kind of denoising methods are non-
local methods, cf. e.g. [11, 8, 3]. Although these methods can be applied in an
iterated fashion, a dependency of the regularization on the minimizer is not
modeled explicitly.

Our paper is organized as follows. In Sect. 2, the proposed generalization
of the TV minimization functional (1) is described. The mathematical frame-
work is presented in terms of variational inequalities. Considering a sequence of
convex variational inequalities, we provide an existence result for fixed points
(see Sect. 3), using only general assumptions on the convex set C(u). In partic-
ular, non-local information can be used in the definition of C(u). Moreover, we
provide a first basic algorithm. The usability of this novel concept is supported
by applications for image and movie denoising. In particular, we generalize the
approach of anisotropic TV with double orientations, proposed by Steidl & Teu-
ber [15] (Sect. 4), and present an anisotropic spatio-temporal TV method for
denoising image sequences (Sect. 5). In Sect. 6 we provide experimental results.
Concluding remarks are given in Sect. 7.

2 Problem

We begin with the primal TV denoising approach (1). Inserting (2) in (1) yields

min
u∈BV(Ω)

{

1

2
‖u− f‖2 + σC(u)

}

. (3)

We follow [4] to derive the corresponding dual problem. With the fact that
v ∈ ∂σC(u) ⇔ u ∈ ∂(σC)∗(v) = ∂(δC)(v) for the subdifferentials of the support
function σC and the indicator function δC , where ∗ denotes the Legendre-Fenchel
transform, we find ∂σC(u) = {v ∈ L2(Ω) : 〈u, v − u〉 ≥ 0, ∀u ∈ C}. Thus the
optimality condition for u minimizing (3) reads

f − u ∈ ∂σC(u) ⇔ 〈u, f − u− u〉 ≥ 0, ∀u ∈ C.

Using the additive decomposition f = u + v, we find v = ΠC(f), where ΠC
denotes the projection onto the closure C of C. Finally, we end up with the dual
problem

inf
p∈D

F (p), F (p) :=
1

2
‖f − div p‖2. (4)

In the following, we study generalized adaptive denoising approaches that take
into account dependencies of the primal and dual constraint sets C(u) and D(p),
respectively, on the solutions themselves. To this end, let

C(u) := div{p ∈ C∞
c (Ω,Rd) : p(x) ∈ D̃(x, u)}, (5)
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where D̃(x, u) : Ω × BV(Ω) ⇉ R
d is a set-valued mapping. In view of the dual

problem (4), we define D(x, p) := D̃(x, f − div p) and

D(p) := {p̃ ∈ C∞
c (Ω,Rd) : p̃(x) ∈ D(x, p)}. (6)

3 Approach

3.1 A Quasi-Variational Inequality

We approximate the space C∞
c (Ω,Rd) by a finite-dimensional space R

nd. Then
the set-valued mapping D in (4) takes the form

D : Rnd
⇉ R

nd, p 7→ {p̃ ∈ R
nd : p̃i ∈ Di(p), i = 1, . . . , n}. (7)

Here, Di(p) : R
d
⇉ R

d, i = 1, . . . , n is the discrete analogue of D(x, p). Note that
in the finite dimensional setting D(p) is compact. In order to show existence
of a solution, if the constraint sets (5) and (6) vary, in analogy to [2, Prop.
4.7.1], we formulate our approach as a generalization of the variational inequality
corresponding to the dual problem (4): find p ∈ D(p) such that

〈∇F (p), p− p〉 ≥ 0, ∀p ∈ D(p). (8)

Notice the dependency of the dual constraint set on p, that significantly
generalizes the dual TV minimization problem.

3.2 Existence of Solutions

The existence of a solution to (8) can be shown under the following assumption:

Assumption 1. Di(p) : R
d
⇉ R

d, i = 1, . . . , n have the following properties:

1. For fixed p the set Di(p) is a closed convex subset of Rd.
2. There exists c > 0, such that for all i, p: {0} ⊂ Di(p) ⊂ Bc(0), where Bc(0)

is the closed unit ball. In particular, Di(p) is non-empty.
3. The projection ΠDi(p)(q) of q onto Di(p) for a fixed q is continuous w.r.t. p.

Proposition 1. Let F := 1
2‖f − div p‖2 and D be defined as in (7), such that

Di(p), i = 1, . . . , n satisfy Assumption 1. Then the problem

find p ∈ R
nd such that 〈∇F (p), p− p〉 ≥ 0, ∀p ∈ D(p) (9)

has a solution.

The proof of Proposition 1 utilizes the following theorem and lemma.

Theorem 2. (cf. Theorem 5.2 in [5]) Let G : Rm → R
m be a point-valued and

D : Rm
⇉ R

m be a set-valued mapping. Suppose that there exists a nonempty
compact convex set P such that
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1. D(P ) = ∪p∈PD(p) ⊆ P ;
2. D takes nonempty closed convex sets as values;
3. D is continuous, that is D(pk) → D(p) whenever pk → p, or in view of (2),

denoting the projection onto D by ΠD(p), equivalently ΠD(pk)(p) → ΠD(p)(p)
for all p

Then there exists p ∈ R
nd such that 〈G(p), p− p〉 ≥ 0 for all p ∈ D(p).

Lemma 1. Let D be defined as in (7). Assume that for every i = 1, . . . , n
and q ∈ R

d the projection ΠDi(p)(q) is continuous w.r.t. p. Then ΠD(p)(q) is

continuous for fixed q ∈ R
nd.

Proof. ΠD(q) can be written asΠD(p)(q) = (ΠD1(p)(q1), . . . , ΠDn(p)(qn))
⊤. Thus

each component of ΠD(p) is continuous, from which the continuity of ΠD(p)
follows immediately. ⊓⊔

Proof of Proposition 1: We apply Thm. 2. Conditions (1) and (2) follow from
Assumption 1, that, in turn, has to be verified later, see Prop. 2, 3 and 4.
Lemma 1 shows that also condition (3) holds. ⊓⊔

3.3 Algorithm

We propose an algorithm for solving (9). Let us first consider the case where D
does not dependend on the dual variable p. The problem then can be solved by
a projected gradient method:

pk+1 = ΠD
(

pk − τ∇F (pk)
)

, 0 < τ < 2/L,

where L denotes the Lipschitz-constant of ∇F . In order to adapt to the depen-
dency of D on p, we propose to use

pk+1 = pk −
1

λ

(

pk −ΠDk

(

pk − τ∇F (pk)
)

)

, Dk := D(pk),

with sufficiently large λ ∈ (0, 1). In practice, two nested iterations, one outer iter-
ation for updating D and one inner iteration for updating p, are used. Providing
convergence results will be part of our future work. However, our experiments
show that this iteration converges for λ sufficiently large.

4 Adaptive Anisotropic TV Minimization for Image

Denoising

In order to improve the image quality of TV methods for denoising, Steidl &
Teuber [15], proposed an anisotropic TV method based on two independent
orientations. In this section, we demonstrate how this approach can be modified
in order to fit into the ansatz presented above. As a consequence, Prop. 1 provides
a theoretical underpinning. Before discussing the approach in [15] (Sect. 4.2), we
describe the required modifications by means of a simpler model (Sect. 4.1).
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4.1 Anisotropic TV with a Single Direction

Consider u ∈ L2(Ω), Ω ⊂ R
2. The aim is to define a convex set D(p) (cf. (6))

satisfying Assumption 1 in order to derive an anisotropic TV measure.
In our approach, we are interested in a local description of the set D. To this

end, we define D(x, p) for any x ∈ Ω, based on local edge information obtained
from u = f − div p. To be precise, for an edge being present at a location x the
set D(x, p) will be defined as a square with one side parallel to the edge.

In order to detect edges, we utilize the structure tensor J(x, u) defined as
follows: Let

J0(x, u) := ∇uσ(x)∇uσ(x)
⊤, (10)

where uσ := Kσ ∗ u is a smoothed version of u, obtained by convolution with a
Gaussian kernel Kσ with standard deviation σ > 0. The structure tensor J(x, u)
is given as

J(x, u) := Kρ ∗ J0(x, u), (11)

with ρ > 0. (Here the convolution is applied componentwise). Moreover, let
vi(x, u) and λi(x, u), i = 1, 2 be the eigenvectors and eigenvalues of J , respec-
tively. We assume w.l.o.g. that the eigenvalues of J(x, u) are ordered, λ1(x, u) ≥
λ2(x, u) ≥ 0, with corresponding eigenvectors v1(x, u) and v2(x, u). For simplic-
ity of notation, we omit the dependency of D, J , vi and λi on x in the following.

Consider for a moment some arbitrary r ∈ R
2, ‖r‖ = 1. We define the square

S(r) with sides parallel to r and r⊥ as

S(r) := {p ∈ R
2 : |r⊤p| ≤ α, |(r⊥)⊤p| ≤ α}. (12)

We would like to set D(p) = S(r(f − div p)) with r(u) = v1(u). But then the
projectionΠD(p) would not depend continuously on p, since the eigenvector v1(u)
in general does not depend continuously on the entries of J(u).

On the other hand, for S(r) as defined in (12), the mapping r → ΠS(r)

is continuous, as the following lemma shows. Moreover, u = f − div p depends
continuously on p. Thus, asserting the continuity of r(u) is sufficient to guarantee
the continuity of ΠD(p).

Lemma 2. Let S(r) be defined as in (12). Then ΠS(r)(q) depends continuously
on r for fixed but arbitrary q.

Proof. For q ∈ S(r), we have ΠS(r)(q) = q. For q 6∈ S(r) the projection onto
S(r) can be calculated as follows: Let j∗ := argminj=1,...,4 ‖q − Πj(q)‖, where
Πj is the projection on the j-th side of the square. Then ΠS(r)(q) = Πj∗(q).

Each of the projections Πj is a composition of the orthogonal projection onto
a line and a projection from the line onto a line segment. Only the projection
onto the line depends on the parameter r. Since the orthogonal projectionΠ onto
a line {a+ tb | t ∈ R},‖b‖ = 1, which is given by Π(q) = a+ 〈q− a, b〉b, depends
continuously on a, b, the continuity of ΠS(r)(q) w.r.t. r follows. Obviously, the
transition between the cases q ∈ S(r) and q 6∈ S(r) is continuous. ⊓⊔
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In the following, we describe the construction of a vector r(u) depending con-
tinuously on u, such that r(u) = v1(u), if λ1(u) ≫ λ2(u).

Note that the eigenvectors of J(u) ∈ R
2×2 depend continuously on u, as long

as the eigenvalues λ1(u) and λ2(u) differ (cf. Theorem 3 in [12]). We define

coh(u) := λ1(u)− λ2(u) ≥ 0.

Note that coh(u) depends continuously on u, since the eigenvalues depend con-
tinuously on J(u) (cf. e.g. Theorem of Wielandt-Hoffman in [16]), and J(u),
which is a composition of convolution and differentiation, is continuous w.r.t. u.

Now let g : R+
0 → [0, 1] be a continuous and increasing function, such that

g(0) = 0 and limx→∞ g(x) = 1. Moreover, let I(p, q, t) : S1 ×S1 × [0, 1] → S1 be
a continuous interpolation from p to q on the unit sphere S1 with the properties,
that I(p, q, 1) = p, I(p, q, 0) = q and ‖I(p, q, t)− q‖ ≤ C‖t‖ for some C > 0. (For
example, a steady rotation of vector p onto q suffices.) We set

D(p) := S(r(f − div p)), (13)

where r(u) := I(v1(u), (1, 0)
⊤, g(coh(u))). The set D(p) satisfies Assumption 1:

Proposition 2. Let D(p) be defined as in (13). Then

1. D(p) is closed, convex and satisfies {0} ⊂ D(p) ⊂ B√
2α(0).

2. For fixed q ∈ R
2, u → ΠD(p)(q) is continuous.

The proof of Prop. (2) utilizes the following lemma:

Lemma 3. Let q be fixed. Then r(u) = I(v1(u), q, g(coh(u))) depends continu-
ously on u.

Proof. We distinguish between the cases coh(u) > 0, and coh(u) = 0. In the
first case, v1(u) is an eigenvector to an isolated eigenvalue and thus depends
continuously on J(u), see [12]. Moreover coh(u) depends continuously on J(u)
(cf. [16]). Since J(u) is a composition of convolutions and differentiation, it
depends continuously on u; thus coh(u) and v1(u) are continuous. The continuity
of r(u) at u, coh(u) > 0 then follows from the continuity of I and g.

In the second case, coh(u) = 0, we find from the continuity of coh(u) that
coh(uk) → 0 for every sequence uk converging to u. Then the continuity of r(u)
follows from

‖r(uk)− r(u)‖ = ‖I(uk, q, g(coh(uk)))− I(u, q, g(coh(u)))‖

= ‖I(uk, q, g(coh(uk)))− q‖ ≤ Cg(coh(uk)) → 0,

using the properties of the interpolation I. ⊓⊔

Proof of Prop. 2: (i) The set D(p) is a closed square with center 0 and sides
of length 2α > 0. (ii) Lemma 3 provides the continuity of r(u). Moreover, u =
f − div p depends continuously on p. Together with Lemma 2 the continuity of
D(p) follows. ⊓⊔
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4.2 Anisotropic TV with Double Directions

Steidl & Teuber [15] proposed an anisotropic TV method based on the estimation
of two orientations r1, r2 : Ω → R

2. They consider the variational problem:

min
u

1

2
‖u− f‖2 + α

(

|r⊤1 ∇u|+ |r⊤2 ∇u|
)

, (14)

where two models for obtaining r from the data f are proposed. As an alternative
to (14), they propose to use infimal convolution. In the dual formulation of (14)
the set D = D(f) is a parallelogram with sides ri, i = 1, 2:

P(r1, r2) := {p ∈ R
2 : |r⊤1 p| ≤ α, |r⊤2 p| ≤ α}. (15)

In our considerations, we concentrate on the ’occlusion model’ described in [15].
Moreover, we consider ri depending on the unknown u := f − div p and, by
introducing slight changes of the original approach, guarantee the applicability
of the theoretical results of Sect. 3. The orientations ri are obtained as follows.

Let ν(u) :=
(

(∂xuσ)
2, ∂xuσ∂yuσ, (∂yuσ)

2
)⊤
, where uσ is defined as in Sect. 4.1.

For the occlusion model, the following structure tensor is utilized:

J0(u) := ν(u)ν⊤(u), J(u) := Kρ ∗ J0(u),

where the convolution is applied componentwise.
Now let λ1(u) ≥ λ2(u) ≥ λ3(u) ≥ 0 denote the eigenvalues of J(u), and

v1(u), v2(u) and v3(u) the corresponding eigenvectors.
Analogously to the previous section, in view of the continuity of vi(u) we

have to deal with non-isolated eigenvalues. To this end, we define

coh1(u) := λ1(u)− λ2(u), coh2(u) := λ2(u)− λ3(u).

In order to define r1(u), r2(u), we consider the following cases:
Case 1 & 2 – corners (coh2(u) > 0): Steidl & Teuber distinguish between
the cases v3,1 6= 0 and v3,1 = 0 (v3,1 being the first entry of v3). In the case
v3,1 6= 0, they propose to use the unit vectors r11(u) ‖ (v3,1(u), y1(u))

⊤ and
r12(u) ‖ (v3,1(u), y2(u))

⊤, where y1(u), y2(u) are the solutions of the quadratic
equation y2 + v3,2(u) y + v3,1(u) v3,3(u) = 0. Otherwise, the unit vectors r21(u) ‖
(v3,2(u), v3,3(u))

⊤ and r22(u) ‖ (−v3,3(u), v3,2(u))
⊤ can be used.

Case 3 – edges (coh2(u) ≈ 0, coh1(u) > 0): Since we can only guarantee that
eigenvalue λ1(u) is isolated, we determine r1, r2 depending on the eigenvector
v1(u). Along straight edges, the eigenvector v1 is parallel to the normal of the
edge. Therefore v1 and v⊥1 are suitable for defining the orientation for anisotropic
TV at edges. We set r31(u) ‖ (v1,1(u), v1,2(u))

⊤ and r32(u) ‖ (−v1,2(u), v1,1(u))
⊤.

Case 4 – homogeneous regions (coh1(u) ≈ coh2(u) ≈ 0): We use the default
orientations r41(u) := (1, 0)⊤ and r42(u) := (0, 1)⊤.

In general, r1(u), r2(u) have to be continuous interpolations between the above
cases. For i = 1, 2 let

ri(u) = I
(

I
(

r1i (u), r
2
i (u), g(|v3,1(u)|)

)

, I
(

r3i (u), r
4
i (u), g(coh1(u))

)

, g(coh2(u))
)

(16)
using g and I as defined in the previous section.
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Proposition 3. Let D(p) = P(r1(f − div p), r2(f − div p)) with P(r1, r2) being
the parallelogram defined in (15) and ri(u), i = 1, 2 defined as in (16).

1. D(p) is closed, convex and satisfies {0} ⊂ D(p) ⊂ B2α(0).
2. ΠD(p)(q) for fixed q depends continuously on p.

In particular, D(p) satisfies Assumption 1.

Proof. The first claim follows from the fact that D(p) is a closed parallelogram
with sides of length α. For the continuity ofΠD(p)(q), we observe that the vectors

rji (u), i = 1, 2, j = 1, . . . , 4 are defined in a way that they depend continuously
on u = f − div p. The continuity of ri(u), i = 1, 2 is guaranteed by smooth
interpolation (c.f. proof of Proposition 3). The proof of the continuity of P(r1, r2)
is analogous to the proof of Lemma 2. ⊓⊔

5 Anisotropic Spatio-Temporal TV Minimization

In the following we describe a spatio-temporal TV minimization approach. We
interpret time as third coordinate, thus u, f : Ω ⊂ R

3 → R.
To obtain directional information, we utilize the three-dimensional structure

tensor Jρ(u) defined analogously to (10) and (11). Let λ1(u) ≥ λ2(u) ≥ λ3(u) > 0
denote the eigenvalues and v1(u), v2(u), v3(u) the eigenvectors of Jρ(u).

Let us assume that a two-dimensional surface is present in uσ(x). Then
λ1(u) ≫ λ2(u) and v1(u) approximates the normal to this surface. The idea
is to penalize variations mainly in directions tangential to the surface. To this
end we set

D(p) := E(v1(f − div p), α, β),

where E(r, α, β) := {q ∈ R
3 : |r⊤q|2/β2 + ‖q − rr⊤q‖2/α2 ≤ 1}, 0 < β ≪ α.

In homogeneous regions, where a unique orientation r can not be estimated,
we chooseD(p) := Bα(0). A continuous transition between both cases is obtained
by defining

D(p) := E(r(f − div p), α̃(f − div p), β), (17)

where
coh1(u) := λ1(u)− λ2(u) ≫ 0,

r(u) := I
(

v1(u), (0, 0, 1)
⊤, g(coh1(u))

)

,

α̃(u) := g(coh1(u))α+ (1− g(coh1(u)))β.

In order to remove speckles and similar kinds of distortions, an adaptation of (17)
is required. This is due to the fact that at speckles, v1(u) is in direction of
(0, 0, 1)⊤. Using (17) with the above α̃ then would lead to a penalization of ∇u
mainly in spatial directions, which is not suitable for removing distortions of
medium/large scale in spatial directions. Instead we propose to use (17) with

α̃(u) = g(coh1(u))g(φ(u))α+ (1− g(coh1(u))g(φ(u)))β, (18)

where φ(u) is the angle between v1(u) and (0, 0, 1)⊤. The above modification
leads to stronger smoothing of surfaces parallel to the x1, x2-axes.
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Fig. 1. 2D anisotropic TV filtering of artificial test image. Left: noisy test images,
middle: filtering with the standard ROF model, right: anisotropic filtering with double
directions. All images are scaled with respect to the intensity range of the original test
image. Undesirable smoothing effects are considerably reduced on the right.

Fig. 2. 2D anisotropic filtering of real-world test image. Left: noisy test images, middle:
result of standard ROF minimization, right: result of anisotropic TV minimization with
double directions. Undesirable smoothing effects are considerably reduced on the right,
see Fig. 3 for detailed views.

Proposition 4. The set D(p) defined in (17) with the above definitions of α̃(u)
satisfies Assumption 1.

Proof. The set D(p) is a closed ellipsoid and therefore is convex. Its half-axes
are bounded by max{α, β}, thus 0 ⊂ D(p) ⊂ Bmax{α,β}(0). The projection
onto the ellipsoid E(r, α̃, β) can be expressed as a continuous function of r, α̃,
β and one distinct root of a rational function, see [7]. In a surrounding of this
root, the function depends continuously on the half-axes. Thus the root depends
continuously on r, α̃ and β. r and α̃ depend continuously on u = f − div p, as
coh1(u) and φ(u) do. Moreover, u depends continuously on p. ⊓⊔

6 Experiments

6.1 Anisotropic TV Minimization with Double Directions

We present experimental results for the anisotropic TV model with D(p) as
defined in (15) and r1, r2 as defined in (16). We compare this method with
standard ROF minimization, using the same regularization parameter α. We
consider two different test images, both with artificial noise.

For the first test image (cf. Fig. 1, left) we use α = 0.6 and 10 outer iter-
ation steps. The results of the standard and anisotropic TV model are shown

9



Fig. 3. Zoom into two regions of the filtered images shown in Fig. 2. Left: standard
ROF, middle: anisotropic TV minimization with D = D(f), right: adaptive anisotropic
TV minimization with D = D(p). It can be observed that adaptivity of the TV regu-
larization improves with increasing number of iterations.

in Fig. 1, middle and right, respectively. A comparison shows, that anisotropic
TV minimization better reconstructs corners of parallelogram and produces less
smoothing at corners (as already demonstrated in [15]).

The second test image is a real world image with artificial noise, cf. Fig. 2,
left. The result of standard ROF and anisotropic TV minimization for α = 0.4
and 10 outer iteration steps is depicted in Fig. 2, middle and right, respectively.

In order to highlight differences, we zoom into two regions of the image: Fig. 3
shows the results for the standard ROF model (left), the result of applying
anisotropic TV minimization with double directions, where the constraint set
depends only on the data f , i.e. D = D(f) (middle), and the result of anisotropic
TV with the constraint set depending on the solution, D = D(p) (right). It can
be observed that anisotropic filtering leads to an improved and more regular
reconstruction of edges and less stair-casing. If the constraint sets depend on
the solution itself, an adaption to local structures can be observed during the
iterations, see Fig. 3, bottom right. Here, the reconstruction of the characters
improves when using fully adaptive constraint sets.

6.2 Adaptive Motion-Based TV Minimization for Image Sequences

In our example for spatio-temporal TV minimization, we consider an image
sequence taken with a time-of-flight (ToF) camera, see Fig. 4 (4 frames out of the
whole sequence). ToF cameras provide a depth map of the captured scene. The
noise and speckles, which can be observed in the original data, are introduced
by the camera system.

For filtering, we propose to use spatio-temporal anisotropic TV with D(p)
as defined in (17) and α̃ defined as in (18). As parameters, we chose α = 0.3,

10



Fig. 4. Four exemplarily selected frames of a sequence of depth maps taken with a
time-of-flight camera.

Fig. 5. (a) one of the original frames with real noise. (b) frame filtered with standard
2D ROF. (c) frame filtered with standard 3D ROF. (d) frame filtered with proposed
adaptive TV minimization. Only the spatio-temporal methods are able to remove both
noise and speckles. Anisotropic TV keeps the result sharper than isotropic 3D TV
minimization.

β = 0.001 and 10 steps for the outer iteration. The result for one specific frame
is depicted in Fig. 5, right. We compare this method with standard 2D ROF
(Fig. 5, second left) and 3D ROF in the spatio-temporal domain (Fig. 5, second
right), using the same parameter α = 0.3. Additionally, we zoom into two image
regions, see Fig. 6. We observe that standard 2D ROF filtering provides a good
noise removal with preserving edges, but is not able to remove the speckles. 3D
ROF filtering removes both noise and speckles, but introduces some blurring
of edges, which is due to the stair-casing effect in 3D. The proposed adaptive
anisotropic TV comprises both the advantages of the 2D and 3D isotropic model:
it removes noise and speckles, while edges in each individual frame are kept sharp.

7 Conclusion

In this work we have presented a general approach for adaptive total variation.
Existence results as well as a first basic algorithm have been provided. Several
applications demonstrate the usability of our concept. As future work, we will
support our framework with convergence results and investigate efficient numer-
ical solvers.
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