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In tro duction

In image processingmost of the methods for image analysisor feature ex-
traction require satisfactory quality of the imagesunder investigation. In
order to enhancethe quality of images Itering techniquessud ashistogram
modi cations, denoisingor deblurring are performedin a preprocessingstep.

In this thesiswe focuson the problem of denoising,i.e. the removal of noise
in images. See[12] for an overview on denoising.

Among the variety of denoisingtechniques,we want to mertion the classof
di usion lIters sud aslinear diusion (or corvolution), Perona-Malik di u-
sion, and anisotropic di usion, see[12, 14, 54].

We point out that denoisingcan be viewed as an inverse problem With a
concrete noise model at hand, the processof adding noiseto an image |l

giving a noisy image | refersto the forward problem The inverseproblem
is to reconstructly from the noisy data | .

A commonansatzto solwe inverseproblemsis by regularization (see[19, 35]):

We descrile this ansatzin a contin uous setting. Let R2. The noisy
data are identied with somefunctionu : ! RYd 2 N, the noise-free
data with somefunction up : ! RY satisfying certain regularity or smaooth-

nessproperties.

In orderto nd a good appraximation u of ug, taking into accoun that
the function u should appraximate the noisy data u and that

the function u should satisfy the regularity properties of u,
regularization methods consistin nding

argminF (u;u ); (1)
u2Xx

where F (:;:) is somefunctional depending on the noisy data u and on
a regularization parameter > 0. Typically X is an appropriate function

Xiii



Xiv INTRODUCTION

space.
A relationship betweenthe variational approat and somewell-known dif-

fusion techniques, sud aslinear or anisotropic di usion [54], has beendoc-

umerted in the literature, see[47].

This relation is establishedby choosingthe functional F (u;u ) in away, that

the correspnding optimality condition for the minimizer can be interpreted

asoneimplicit time stepwith stepsize of the di usion process.

In the following we comparethe problem of denoisingwith the problem of
parameter estimation, which is in a discrete setting:
Let B, somerandom vector with probability density p, dependingon param-

as parameter estimation. Common methods for parameter estimation are

Maximum likelihood (ML) estimation (seee.g. [42]): determinethe vector

maximal. ML requiresthe parameter model to be known.

Maximum a-posteriori (MAP) estimation (seee.g. [34, 53, 31]): given a
samplety;::: By, nd avectora2 R" sud that the conditional proba-
bility density

ditional probability is reviewed in detail in Chapter 1.)

Besidesknowledge of the parameter model, this ansatz requiresprior
information about the probability of a, referredto as prior.

Conditional mean (CM) estimator (seee.g. [31]): Determine the mean of

Note for the problem of denoisingwith only onesample(N = 1) the result
of maximum-likelihood estimation may resultin u= u .

Comparing MAP estimation and regularization we identify the parameter
model with the noise model and we seethat the prior can be interpreted
as a regularity term, see[28] and refer to MAP estimation as statistical
regularization.

Newerthelesswe have to keepin mind that the regularization ansatzis based
on a cortinuousformulation, whereasthe statistical approad is in a discrete
form.

A detailed comparisonof classicaland statistical regularization in the dis-
crete setting can be found in the book of Kaipio and Somersald31]. In the
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review of this book by Engl ([41, pp. 164-167])it hasbeenpointed out that
further dewelopemert of the statistical theory for in nite-dimensional inverse
problemsis desirable.

In order to useBayesianestimation for denoising,we have to
investigate the problem of denoisingin a discrete setting,
de ning noisemodels, and
determine appropriate priors.

Setting up a MAP estimator for one of these noise models together with a
prior then provides a discrete optimization problem of the form

argminF (¢t );
u2RrN

One goal of this thesisis to motivate the useof the contin uous functional

Z
(u uy,

F (uu):= 20 Ui

jrouj; 2
by statistical considerations. We refer to (2) as the Non-convex-Boundd-
Variation - or NCBV -functional.

Theoretical results on the existenceof a generlized minimizer of the NCBV-
functional can be found in [27].

In literature se\eral aspects of the NCBV-functional have beeninvestigated
sofar:

In [27] the relationship betweenminimization of the NCBV-functional
and the Mean Curvature Flow is shavn numerically.

In [24] the NCBV-functional is adapted for image segmetation.

Future work on the NCBV-functional concernstwo aspects: Firstly, analysis
of the invariancesfor image ltering, as for example translation, rotation
and scaling invariance, motivates that a set of axioms on invariancesmay
uniquely determine the form of f ( ;A) = + JAj usedfor the NCBV-
functional.

Secondly the NCBV-functional may be adaptedto vector valued-data, for
examplecolor images. In particular the adaption to vector-valued data will
lead to generalizationsof the Mean Curvature Flow in higher dimensions.

2
2jAj
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This thesisis organizedas follows:

In Chapter 1 we recall de nitions and results from Bayesian statistics and
descrike the generalform of a MAP estimator.

Besidesrecalling the model of additive Gaussiannoisewe introducea model
for the distortion of sampling points and we determine feasible priors for
image denoising

Using theseas ingredierts for the MAP estimator, we end up with di erent
optimization problemsof the form

h\
argmin f(ui usjr puij); (3)
#2RN

for denoisingdata ¢ , with r , being a numerical shhemefor the gradien.
We point out that the description of the MAP estimators for denoisingis
givenin adiscretecortext for a proper application of the statistical concepts.

In Chapter 2 the discrete minimization problemsare comparedto the mini-
mization of functionals on the in nite-dimensional function spacesw P()
andBV (), respectively. In particular we show that the discretefunctionals
are consistem with the cortinuousones.

Moreover we propose numerical algorithms for MAP estimation basedon
a steepest desceh approad for the minimization problem (3) and a nite
elemen(FE)-based method, respectively.

To emphasizethe importance of denoisingin practice, we provide an excur-
sion on applications of denoisingin astronomicalimaging in Chapter 3. In
particular we descrike the statistical conceptsof the denoisingmethods used.

Numerical results of the algorithms proposedin Chapter 2 are preserted in
Chapter 4. In particular we compareboth kinds of algorithms with respect
to the quality of Itering and computational e ort.



Chapter 1

Statistical Regularization

1.1 Basic Concepts of Statistics

A Bayesianapproad for the statistical inverseproblem of denoisingis based
on a-priori knowledgeabout the statistical distribution of the unknown vari-
ables. We denotethe unkown variablesby u in the following. The distribu-
tion of u is commonly referredto as prior. Knowing the forward problem,
that is how the data, denotedby u , depend on the unknown variables u,
one seartes for the variable u (in generalnot unique) most probably oc-
curring with the given data u . This processis referredto asthe maximum
a-posteriori (MAP) estimator.

To descrile the Bayesian ansatz in detail, we needto introduce random
variablesand their probability distributions /densities aswell as conditional
prolabilities / prolability densities

We start with the caseof discrete probability distributions.

Discrete Probabilit y Distributions

Let D; D becourtable subsetsof RN;N 2 Nand# 2 D;& 2 D. Weassume
that ¢ is somedistortion of . Moreover, we assumethat & and & are
realizationsof randomvectorsU andU . Py and Py arethe probability
distributions of U andU onD and D, respectively. Usingthe samenotation
asin [42 we denoteP(X 2 A) := Px(A) and P(X = a) := Px(fag). For
the badkground on statistics we refer to [17, 34].
The joint probability of both events fU = sigand fU = u g is de ned by
(seel42)])

P (U;U )= (thtt)

Sincewe assumet to be a distortion of &, the ewerns are assumedto be

1



2 CHAPTER 1. STATISTICAL REGULARIZATION

dependen and thusin general
P (U;U)=(htt) 6 P(U=t)P(U =t):

We considerthe problemof nding & maximizing the conditional probability
(see[3, 42]) de ned by

PUU )=(&e ) - .
P(U:HJU :u):: P(U =t ) IfP(U H)@O,
0 else

(1.2)
with respect to u. In the discrete setting MAP estimation refersto the
maximization of the conditional probability of U givenu :

argmaxP(U = t#jU =t )= argmaxP(U =t jU =) P(U =d) (1.2
2D 2D
is referred to as the Maximum a-posteriori (MAP) estimator [55,53]. In
order to apply the MAP estimator, the conditional probability P (U jU) has
to be determined from the model of distortion. Moreover P(U) hasto be
a-priori known. P(U) is referredto asthe prior distribution, or prior in the
literature.

Example 1.1.1. Let U; be two discrete random variableswith valuesin

correspnding prokability distributions are de ned by

1
P(U—u)—é
and 8
50:4 if =0
P( = )= 024 if jj=1 .
B _g 0055 if jj=2 "
" 0005 if jj=3
LetU = U+ |, then
8
0:002 if u = 2.6
X X 0:02 if u= 15
P(U =u)= PU=uP( = )= 0:1 if u= 04
w21y 21z 2 0231 if u= 13
" 0293 if u = 2

(roundd).
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The joint prokability P(U = u;U = u ) is givenby
u
P(UU)| -2 -1 0 1 2 3 4 5 6

u=1 0.002 0.018 0.080 0.133 0.080 0.018 0.002 0.000 0.000
u=2 0.000 0.002 0.018 0.080 0.133 0.080 0.018 0.002 0.000
u=3 0.000 0.000 0.002 0.018 0.080 0.133 0.080 0.080 0.002

and the conditional prokability P(U = ujU = u ) by

u

PUU)| -2 -1 0 1 2 3 4 5 6
u=1 1.0 0.917 0.800 0.576 0.273 0.079 0.017 0.000 0.0
u=2 0.0 0.083 0.183 0.345 0.455 0.345 0.183 0.083 0.0
u=3 0.0 0.000 0.017 0.079 0.273 0.576 080B 0.917 1.0

(Note that thesevalt&;—:-shave been roundal. We have 2., °_ _P(U =
uU =u)=1land . 1P(U— ujuU = u) = 1upto round-o errors.)

For givenu , we can determinefrom P(U = ujU = u ) the most prokable
valueu 2 f1;2;3g. For examplethe prokability P(U = uju = u ) for the
valueof u = 0is maximal for u = 1.

Note that P(U = uy;U = u) and P(U = ujU = u) dier by factor
ﬁ, whichis constantfor xed u , thus we haveargmax, 1..30 P (U =
uju = u) = argmax,y .23 P(U=u;U =u).

Contin uous Probabilit y Distributions

Sofar we have consideredonly discrete probability distributions. For abso-
lutely cortinuous distributions the conceptof MAP estimation is as follows
( seef42, 31)):
Let ;& 2 RN. We assumethat the correspnding random vectors U
and (U; U ) have absolutely cortinuous probability distributions P(U) and
P(U;U ). By denition there exist probability density functions of P(U)
and P(U;U ) (see[42]), which are denotedby py and py., , respectively.
The probability density function of P, satis es
Z

Pu ()= Py (tre)py(y) du:
In the sameway the conditional probability the conditional densities are
de ned:
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We cite the following Lemma from [31, Appendix 2] (adapted to our nota-
tion):

Lemma 1.1.2. Assumethat the randomvariablesU and U are absolutely

continuous with continuous densitiesand & 2 RN is a vector suchthat
Z

py (b)) = pu.u (thtt)da> O:
RN

Further, let (B1)); ;<1 be a decreasing nesial sequene of intervals in RM
suchthat B #fu g,i.e. BU*Y B0 and ;BU) = fa g. Then the limit

lim P(U 2 AjU 2 BU)) = P(U2AjU = ft g)
j!

existsand it can be evaluatel as the integral

Z
1

pu () A

Lemmal.1.2motivatesto introducethe conditional probability distribution
P(U 2 AjU = # ) under the assumptionthat py (¢ ) > 0. In this case
the lemma additionally providesthe density of P(U 2 AjU = & ). More
generalthe conditional probability density py;y (tjtt ) of tt givent is de ned

by

P(U2AJU =fag)= pu.u (tha) dd:

Py.y (the)

puju (bjtt ) := Py () if py (&) 86 0;
0

else

seealso[42. Analogouslywe de ne py jy (t jt).
We have

Pu.u (858 ) = pyju (djt) py () = py ju(t j8) pu(H): (1.3)

Assumingpy (¢ ) > 0 and dividing (1.3) by py (¢ ) givesthe Theorem of
Bayes (formulated in terms of densities):

Pu ju (b jt) py ()
Py (8) '

Puju (Hjt ) = (1.4)

Sincepy (u ) is constart, the MAP estimator in the caseof absolutely con-
tinuous distributions is given by

argzmta)(pu;u (thtt) = argmaxpu ju (t jt) pu (t); (1.5)
@2 RN #2RN
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seefor example[53, 55, 31].
Sincelog(:) is monotone,the minimization problem

argmin - logpy ju (¢t j&)  logpy (t) (1.6)

2 RN

is equivalert to (1.5).
For simplicity of notation, we omit the indicesU;U in py, py.y andpy ju
in the following.

1.2 Sampling points on regular grids

In the following sectionswe considersampling points arrangedon an equidis-
tant one-or two-dimensionalgrid.

By h > 0 we denotethe meshsize.

For N;M > O let

We considerN M sampling points x;; 2 R? given by

(i Dh

Xij = G 1h ;@21

The valuessampledat x;; are denotedby
u = (Ui )iz
and the distorted valuesare denotedby
u = (U )g)a
In the one-dimensionalcase,we assumeM = 1 and usethe abbreviations

Xj = Xj1;Up i= Upp and u; 1= U .

Example 1.2.1. Consideringa graysale imageof N M pixels, x;; refer
to the pixel locations and uj; are the pixel intensities.
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Figure 1.1: Example of an imagewith additive Gaussiannoise.

1.3 Noise Mo dels

Additiv e Gaussian Noise

To begin with, let us recall the model of additive Gaussiannoise (seefor
example[31]). We assumethat noisy data u are given by

Ui = Ui + i, (ij)y21; a.7)
where ;; arerealizationsof independen and identically distributed (i.i.d.)
Gaussianrandomvariables ;; (see[17]) with zeromeanandvariance ?; >
0. The probability density of ; is denotedby

]
PCij)= —P= &P 55
Let = ()2 -

Since ;; areindependert, the probability density function of = (i )i;j)2
is given by

Y 1 NM Y 2
p ()= P(i)= —P5 exp 2—‘2 (1.8)
()2l (i )2
For givenu we haveU = u + and thus
p(uju)=p (U u): (1.9)

In other words the probability density of p(u ju) is just a translation of the
probability density p , see[31]].
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Inserting (1.8) in (1.9) gives

!
Ny CE

. 1 '
pu ju) = P exp o

5 (1.10)
()2

In Section1.5we use(1.10) for de ning a MAP estimator for denoising.

Sampling Point Errors

Besidesthe model of additive Gaussiannoisewe considera model with sam-
pling point errors as follows:
Consideringdata collectedfrom a sampling process,we assumean error of
the sampling location:
Let x;;; (i;]) 2 | denotethe samplingpoints, seeSection1.2. Moreover, let
u2 C2(R") and let

uij = ulxij);  (5)) 21
denotethe undistorted data.

For (i;j) 2 I let 2 Randny = jhaid (We chooseny; = O, if
r u(xi) = 0).

We assumethat the sampling points x;; are distorted by a random shift in
direction of 1 , with

Xjj = Xij + i B s (i;)) 21
being the distorted sampling point locations. In the one-dimensionalcase
(n = 1) the shift is sgnr u(xj)) . For spacedimensionsgreater than 1
(n > 1) the shift is in normal direction to the level setsof u, seeFig. 1.2.

The recordeddata u;; are

(o

i = U(X) = ulxig o), (5]) 21 (1.11)

For this model we note that

For xed Xi; ; B 5 Ui there may existsdi erent shifts ;; providing

s ¢

= Ul o Ry ): (1.12)
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Level line

Figure 1.2: Distortion of a sampling point in 2D: the shift is assumedto be
normal to the level line.

For examplelet n = 1;N = 1 and u(x) = sin(x). For x; = 0, u; =
u(x;) = 0andu = Oanyshift = ;=s;s2 Zsatisesu(x;+ )=
0= uj.

The model requiresdi erentiabilit y of u at leastin a neighborhood of
eah sampling point.

We considerdi erent modeling, which is basedonly on discrete data and
which providesuniquenesof the shifts ;; . The uniquenesf ;; providesa
basicrelationship betweenthe conditional probability density p(u;; jui;j ) and
the probability density p( i; ), see(1.24) and (1.25) below.

Let
r hui;j =r hu(Xi;j ), (I,J) 21 (113)

be some nite di erence stheme for approximating r u(x;; ), satisfying the
following assumption:

Assumption 1.

(a1) Assumethat there existhy > 0 and C > 0, suchthat for
every0< h hy and everyv 2 C%(R?)

Jrwv(x) rv(x)jz C max jHv(y)j2h;
y2Bn(x)

wher Hv is the Hessianof v 2 C?(R") and jij, is the
spectral norm.
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Now we assumethat the recordeddata are

Uy = Uig + i Jr Ui J: (1.14)
We then have
gz (1.15)
! Ir hui;jJ

The following Theoremdescritesthe di erence betweenthe two models:

Theorem 1.3.1. Letr |, satisfy the assumption (al)for hg > O.
Letu2 C?(R"), xij 2 R"; i 2 Rfor (i;j) 21 andd:= maxfj ijjj(i;j) 2
| g.

For (i;j) 2 1 wedenoteu;; = u(Xij), r nUij = r pu(X;;). For u ;& asin
(1.11) and (1.14) we have
jey Uy j=dO(h)+ o(d) (1.16)
Proof:
Using the de nitions of u;; and &, it follows that
je o Ul = oulxg +ogaig)  uxg) g nulxig)j (1.17)
Sinceu 2 C2(R?) and jn;; j = 1 Taylor-approximation gives
julij + gmig)  ulkig) g hruCg)ieg i Cd* (1.18)
with C > 0 depending on MaX 5, x,) H u(x).
Combining (1.17) and (1.18) and using that
. r U(Xi-j) . . .
hr u(x;; ); A1 = hr u(X;j ); ————=i = jr u(X;;)j;
( I,J) 1) ( I,J) Jr u(xi;j )] J ( 1) )J
gives
jug e i Jr u(Xig )i i dr pu(Xig)j + ofd)
djr u(xi)i r au(xi;)j + o(d) (1.19)
dr u(xij) rau(x) + o(d):
With

M = max max__ jHu(x)j»
(i )21 XZBho(Xi;j )
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it follows from assumption (al) and (1.19) that

ju thi] CMdh+ o(d):

ij i
This shaws the assertion. O

Theorem 1.3.1 shaws that the data u;; given by model (1.14) for small
h;d= maxf ij j (i;j) 2 | g approximate the data t; of model (1.11).

Figure 1.3: Example of an imagewith sampling point errors.

Let us give an 2D-examplefor a numerical shemer :

Example 1.3.2. Leth> 0andu 2 C?(R?). We de ne

I
u(xis1g) u(xig) o
Fal(Xig) =y, A5 W) @(i))21: (1.20)
h

Let Hu be the Hessianof u and

M (xij) ==  max_ jHu(x)j2:

X2Bh (Xij )
For xed x, Taylor-approximation gives

U(Xi+1j  U(Xij)
h
u(Xij+1  U(Xij)
h

@u(xij)  Mr(xi5) by

(1.21)
@u(xij)  Nr(xi;)h;
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and thus p_
jru(x;) roau(xi)j 2NF (X )h: (1.22)

We investigate the noisemodel (1.14) in the cortext of statistics:

We assumethat u;; ;jr nuijj; (i;j) 2 1 arerealizations of random variables

U= (Ui andV = (Vi )iz -

Moreover, let ( ij)j)2 be realizationsof i.i.d. Gaussianrandom variables
ij with zeromeanand variance 2 > 0.

The probability density of ; thenis

4 g
p(i):= —92: exp 52
The randomvariable U = (U )¢ij)2 is given by
Uj = Uy + i Vigs
wherethe distorted data are realizationsof U .
Note that for xed u;; andjr nu;;j we have
Ui;j = Ui + ir hui;jj: (1.23)

Let v := (r nUij)ij)2 - From the results in [31, Section 3.2.2], since the
shifts ;; arei.i.d. andindependern from u;v, it followsthat the conditional
probability density p(u ju;v) is given by
y Z
p(u ju;v) = (Uij Uy Jr wUigjs) p () ds; (1.24)
iya R

where (:) denotesthe Dirac distribution.
Sinceu;;  Uij  r nUijj s = 0 uniquely determiness, (1.24) simpli es to

p(u ju;v) = P(U;j JUij 5T nUij )
(i) , Lot
_ 1 MY exp (g uy)® (1.25)
2 )2 2 Jr nugj?

For the following we assumethat v = (r nuij )¢j)2 are determined by u.
For example assumethat the valuesu;; i = 1;:::;N; are given on a one-
dimensional equidistart grid with mesh size h, then using the numerical
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shemer pu; ;= ==t = ;N 1 and r puy = ML respec-
tively, the values(r hu;)l, dependon (u)N;.

With this assumptionwe have
p(u ju;v) = p(u ju):

and

!
1 WMy (g uy)?
W ==po= % 23,7

(1.26)

Let us extend the model of sampling point errors by assumingadditional
Gaussiannoisein the sampledvalues:

Let ij;(i;j) 2 |1 berealizationsofi.i.d. Gaussianrandom variablesg; with
zeromeanand variance ?; > 0.

Figure 1.4: Example of an image with sampling point errors and additive
Gaussiannoise.

The probability density of E;; is denotedby
-2 i
p(i):= —p? exp 52

The sampleddata are assumedto be

Uy = Ui + g Jr aUigj+ g (1.27)
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Equivalertly we have

u Ugj = Jr nUijj i + i (1.28)

i5j
By taking the squareon both sideswe get

(U Ui )% = i2;jjr hui;jj2+ 2r wUij o .21
=2 nUyj iy oy +OCE+ 5)
and thus ( 2
Ui Ui )",
o e 1.29
A 2r puijj (1.29)
Eq. (1.29) motivatesto considerthe product of the random variables E;;
and iij -
Denoting the product probability density of E; ;; by p it follows that
p(ujjui;) P Cig i) (1.30)
An approximation of the product probability density p is derived asfollows:
We have
P ()= PP —= ds
Z52R S
! s? (ij i)
/ ) exp( ﬁ) exp 272?2 ds (1.31)
Z 4 252 4 Z(i:jszi:j )"
= ) exp 57 ds;

wherea/ bdenotesthat a is proportional to b.
With the function

. . — S
g(a;s) := R
it follows that
i 2% _ il
222 -
+ 262 5 Jig i)t 20y 52”)
222
o (1.32)
S I S 5
= —
j i i;jj

——=+d( i ij1:9)
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0.9
0.8
0.7
0.6
05

exp (- 9(a.s))

04|
03}
0.2
0.1}

-10 10

Figure 1.5: Function exp( g(a;g) with = = 1 plotted for a = 0 and
a = 1, respectively. Integration exp( g(a;s)) ds givesG(a) asusedfor
appraximation of peg,

1

it

R
Let G(a) = i exp( g(a;s)) ds, seeFig. 1.5.

Inserting (1.32) in (1.31) gives
1

P Cij ij)/ exp Ly il g ij ijj;s) ds
1
b il z . .
=exp U0 exp( gy ijiS)ds
s2R
— ji;j i;jj
= exp - G(J iij |;JJ)-

Note that for G we have

jG@j<1; jGlo)j<1; (1.33)
seeLemmaA.l.1lin A&)@dix A.1l. We approximate G(a) by G(0) + O(ja))
and derive with 1= —— that

p (i i)/ GO)exp i)

1'57;11 + O( i 1))

+ O(J B] i;jj)
(1.34)
| exp

Inserting (1.34) in (1.30) and normalizing the probability density gives
!

(Uij Uy )2.

) 1
p(u;; juij ) P > exp 2 2jr pUij |
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and thus

l
MY (Ui ui;j)2 .

1
uiju — ex . . 1.35
p(u ju) —97 p 2 3 puij ] ( )

1.4 Priors for Grayscale Images

In the remainder of this chapter, we considerdenoisingof grayscaleimages
with statistical methods and shov an equivalencerelation with regularization
models.

We consideranimageof N M pixels and imageintensitiesu = (Ui; )¢ )21
which are assumedo be integersin the range[0; 256).

The goal of this sectionis to determine prior distributions (seeSection1.1)
for images. For applying the MAP estimator (1.6) the density p(u) of prior
distribution hasto be known a-priori. Moreover the result of MAP estima-
tion qualitatively dependson the chosenprior.

For illustration we use two test imagesshown in Fig. 1.6. The rst one
is a digital photo and the secondis an image generatedby convolution of a
piecewiseconstart function with a Gaussiankernel. We referto theseimages
asthe \mountain" imageand \cards" image, respectively.

Figure 1.6: Two test images\mountain” and \cards".

From theseimageswe producedistorted imageswith additive Gaussiannoise
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and sampling points errors.

Sincethe data after adding Gaussiannoiseoccasionallytake valuesoutside of
[0; 255],the data is projected to integer valuesbetween0 and 255for storing
the image. In the processof distorting the sampling points we assaiate
shifted sampling points outside the image domain with zerointensity.

0.045

'moun‘tai.n' imagé
0.04} noisy image-------- |

0.035f
0.03

0.025

P(u)

0.02 |

0.015F

0 50 100 150 200 250 300
u

Figure 1.7: Histogram of the intensitiesu;; of the \mountain" imageand the
image distorted with Gaussiannoise.

0.2 | - |
‘cards' image
noisy image -------
0.15
S
T O0lt
0.05
0 Do A oA aezae M/—%L"K " AMWL/J
0 50 100 150 200 250 300

u

Figure 1.8: Histogram of the intensities u;; of the \cards" image and the
imagedistorted with Gaussiannoiseintensity errors.

Let us assumethat the image intensities are realization of the following
Markov random eld (MRF) (see[55, 31]): For ead (i;j) 2 | we denote
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the set of indicesof the eight pixels adjacert to x;; (neightmrhood) by N by
and the family of neighborhood setsby

Nb=fNhbyj(i;j) 2 | g

Let usassumehat the imageintensitiesare realizationsof a Markov random
eld with respect to the systemND, i.e. the conditional probability distribu-
tion of U;; givenall other intensity valuesdependsonly on the valuesin the
neighborhood of (i; j):

P(uij Jf uiajk 6 1316 ) = p(ui; Jf ua; (k1) 2 Nby 9):

Then the Theoremof Hammersley-Cli ord (seg[55, 31]) statesthat the prob-
ability density of U hasthe form
0 1

X
p(tt) / exp@ Vi (u)A

(i )2l
whereV;; (u) dependsonly on u;; and uy,; (k;1) 2 Nbj .

One possibleform of V;; (u) is, that it dependsonly on u;;, i.e. the prior
is basedon the histograms of the images. Seeral priors of this form are
introducedin [31].

Investigating the histogramsof the above images,we obsene the following:

When adding Gaussian noise to an image, the histogram becomes
smoother, seeFigs. 1.7 and 1.8. Since noisy data are projected to

[0; 255], an increaseof the number of pixels values0 and 255 is ob-

sened in the histogram.

For the test imageswith samplingpoint errorswe note that asseiating
shifted sampling points lying outside the image domain with zeroin-
tensity leadsto an increaseof the number of pixels with zerointensity
(black pixels). Besidean increaseof additional blad pixels, we obsene
that the histogramis only slightly a ected by the distortion. (For this
reasonwe omit the correspnding histograms.)

We note that the histograms depend on the image cortent. Moreover in
the histogramsthere is hardly an e ect of the distortion of sampling points.
Consequetly, a prior de ned basedon a presumedintensity distribution is
not suitable to distinguish betweendistorted and undistorted data.
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Instead of the distribution of intensities, let us investigatethe distribution of
the di erences betweenthe intensities of adjacert pixels, i.e. V;; (&) depends
on Ui Uk (k;l) 2 Nhbyj. In this sectionwe only consider 'right-sided’
dierences,i.e. Ujs+1j Uy andUij+1 Ui .

Fori=12;:::;;N 1;)=1;:::;M 1wedene

Uivz;j Ui

; 1.36
Uij+1 Ui ( )

Vij =
thus vi; is de ned for ead image pixel exceptfor the bottom row and the
right column of the image. Let

I =f@;)))ji=21:N 1;)=21:::;M 1g:

Let usinvestigatethe (empirical) distribution of the samplejv;;j; (i;]) 2 |
from the above test images. We denote the empirical distribution of jvi; j
by P(jvj). We determine P(jvj) by dividing up the interval [0; 256) into K
congruent subintervals

256 1) 256&

I = , k=1:;K;
k K ) K ) 1 1 )

courting the occurrences
6= #fvyi2 ha(i) 21 g (1.37)

and scaling eat ¢ by factor Pﬁ thus the empirical distribution of
jvij J is given by -

P(vj2 1y) = ¢ jlyj; k= 1;:::K:
Fig. 1.9 and Fig. 1.10 show the histogramsof jv;; j for the \mountain" and
\cards" image, respectively. For the readersconveniencewe only plot the
rangewherethe ¢, are positive.
We comparethe distributions of jv;; j for the distorted and the original test
images,seeFig. 1.11and 1.12.
We obsene that for the original imagesthe values of jv;jj are both con-
certrated at zero. Large intensity di erences between adjacen pixel occur
rarely. For the data distorted with Gaussiannoisejv;; j shov a wider spread-
ing comparedto the noise-freedata for both the \cards" and the \mountain”
image.
For data with shifted sampling points, we seea signi cant di erence in the
distribution of jv;; j for the \mountain” image. For the \cards" image shift-
ing the sampling points is only obsenable at the edgesin the images,but
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0.16
‘Histogram of ly| ==

Laplacian fit
0.14 \ Gaussian fit-—-—-—- 1

0.12

0.1

P(Iv)

0.08

0.06

0 10 20 30 40 50
vl

Figure 1.9: Distribution of jv;jj derived from the \mountain" image and
tted Gaussianand Laplacian distributions.

not in the homogeneousegions. Sincethe \cards" image cortains only a
few edgesthe e ect of the sampling point errors on the histogram is weaker
than for the \mountain” image.

The above results motivate to de ne a prior for imagesbasedon the proba-
bility distribution P (jvi; j):

We look for a probability distribution with density function p(jvj) with sup-
port in [0;1 ), sud that
Z

P(k) := p(x) dx; k2 Ng
Ik

approximates the distribution of jvi; j. By using the one-point quadrature
rule to appraximate

Ik

we thereforemay directly t a probability density function p(x) to the scaled
data.

Since the empirical distribution is large for small jvi; j and decreasedor
intervals of larger intensities, we approximate the distribution of c¢; k =

(
0 if x< 0

P(x) = o exp( XY ifx 0



20 CHAPTER 1. STATISTICAL REGULARIZATION

1.6 —
Histogram of ly| ==

Laplacian fit
14} Gaussian fit-—-—-—- 1

12

P(Iv)

10 20 30 40 50
vl

Figure 1.10: Distribution of jv;;j derived from the \cards" imageand tted
Gaussianand Laplacian distributions.

H ; . + — 1
; =R —.
with suitable parametersa;q2 R* and ¢ ‘el 2T ax
In this thesiswe concertrate onq= 1 and q= 2 only (usinga:= ~,, for
q=landa:= 2~2, ).

We referto the correspnding distributions asthe Laplacian-like (9= 1) and
Gaussian-lile (g = 2) distribution.

We determinea and q 2 f 1; 2g, sudh that the sum of squarederrors between
data and theoretical probability density p(jvj) is minimal.

In Fig. 1.9 and Fig. 1.10we addedthe graphsof the optimal p(jvj) forq= 1
andq= 2.

Table 1.1 shaws the sum of squarederrors betweenthe empirical data and
the Laplaceand Gaussiandistribution, respectively, for the \mountain" and
the \cards" image. We obsene that the Laplaciandistribution approximates
the data with smaller sum of squarederrors than the Gaussiandistribution.

We useboth kinds of distributions, with gq= 1 and q= 2, to derive animage
prior p(u):
In the caseof a Gaussian-lile distribution we set
L -Vi;' j2
v )/ exp 2
P!

rior




1.4. PRIORS FOR GRAYSCALE IMAGES 21

0.2

‘mountain’ imége
distorted sampling points-—------
noisy image -

0.15r

P(Iv)

01r

0.05

0 10 20 30 40 50
vl

Figure 1.11: Distribution of jv;; j from the \mountain” imagewithout distor-
tion, with Gaussiannoiseand with sampling point errors.

TeSt Image ‘ SSEGaUSS ‘ SSELap| ace
\mountain" | 313 10 ® | 261 10 3
\cards" 1025 10 ® | 1:14 103

Table 1.1: Sum of squarederrors betweenempirical data and Gaussianand
Laplacian distribution, respectively.

and therefore

0 1
Y 1 X
p(u) = p(vi;) = cexp@ = jvig 2 (1.38)
@i )2l prior(j:j )21

and in the caseof a Laplacian distribution we set

o Vi
(v )/ exp D
prior
and thus
0 1
A 1 X
p(u) = p(vij) = cexp@ — jvij iA (1.39)
(ii)2! PO (i )21

respectively. Herec is an appropriately chosenconstarn.
We refer to the two priors (1.38) and (1.39) asthe Gaussianand Laplacian
prior. (In [3]] this prior is referredto asthe total variation (TV) prior).
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0.35 T —
‘cards' image
distorted sampling points--------
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vl

Figure 1.12: Distribution of jv;; j from the \cards" imagewithout distortion,
with Gaussiannoiseand with sampling point errors.

Remark 1.4.1. Letv:= (v;Vy) 2 R? be a realization of a two-dimensional
Gaussianor Laplacian distributed random variable with prokability density
function

2 2\2
p(v) / exp (%) :r (vy)7): . (1.40)
prior
whee ~,,, > 0, g2 f1;,29. We have
Z i
B(jvi) / exp A ds:
s:jvj ~pri0r
Since p(jvj) is radial-symmetric, it follows
-
BGvi) / 2 jviexp (1.41)

prior

Note that for g= 2 p(jvj) is a Rayleighdistribution.

Let us compare the theoretical distribution p(jvj) in (1.41), ses Fig. 1.13 with
Figs. 1.9 and 1.10.

We observethe empirical distribution of jv;;j for the \cards" image attains
its maximum at co, i.e. the valuesof jv;; j concentrate near jv;jj = 0.

i.e. the gradients do not concentrate at 0.We think that this is due to the
texture contained in the image.
Since also p(jvj) in (1.41) attains its maximum at x > 0, and the shapes of
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0.9 | |
p(lv]) for a=1,=1——
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Figure 1.13: Probability density function p(jvj) = ¢jvjexp( jpv—’q) with

s le= B jsiexp( 421 ds 1forq: landq= 2
prior , 0 ~prior .

both distributions (see Figs. 1.9 and 1.13) look similar, we may approximate
the empirical distribution by tting p(jvj) to the data.

This ansatz pro@desan alternative prior for images:
Settingp(u) := 5y P(VijJ) we have

Y iv.. id
p(u) / jvig jexp 1)

(i;j )2| prior

(1.42)

with g = 1;2 and someconstantterm ¢ > 0. We refer to this asthe log-prior
in the following.

Note that the choice of the prior has a strong impact on the result of the
MAP-estimation: Compared to the Gaussianprior (1.38) and Laplacian
prior(1.39) the log-prior (1.42) shows up a signi cant di erence: Due to the
speci ¢ form of p(jvj), we implicitly assumethat the gradierts do not con-
certrate at zero, whereaswith the priors (1.38) and (1.39) small gradierts
are more likely to occur. Thereforewe expect a signi cant di erence in the
results when using prior (1.42) instead of the Laplacian and Gaussianprior.
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1.5 MAP Estimators for Grayscale Images

The image priors introduced in Section 1.4 are basedon the di erences of
the intensities of adjacert pixels. Thinking of an image as a bilinear inter-
polation u of the data u an a equidistart grid of meshsizeh and choosinga
speci ¢ numerical shemer u;; , we can expressjvi;j j ashr pu;; .

To be precise,let r wui;;(i;]) 2 | bede ned by

80 1
g Ui Wig iy 2
Uij+1 Ui
0 1
%)Ui+1;j ui;j g fOI’I: 1,,N 1,] — M,
Ui;j Uij 1
I wlij = 0 1 (143)
s YN g fori=N;j= LM L
Uij+1 Ui
0 1
2p i YN g iz N = M:
Ui;j Uij 1

Obviously r nu;; de ned by (1.43) satis es assumption (al). Moreover we
have hr wui; == v;; for (i;j) 2 1 .

Replacingv;; by hr u;; in (1.38), (1.39) and (1.42) we derive with  ,, :=
o jn the caseof a Gaussian-like distribution that

“h
0 1
1 X .
p(u) = cexp@ = jronuig j2A (1.44)
prior (i;j )ZI
in the caseof a Laplacian-like déstribution that
1
1 X .
p(u) = cexp@ ironuig A (1.45)
prior (i;j )2|
and for a distribution as motivated in Remark 1.4.1with ,, = &%~ and
adjusting constart c that
Y i . iq
p(u) = ¢ jr nuij jexp 'l )7 ; (1.46)

prior

(@i)2l
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respectively. Note that by rescalingof the variance~,,, by factor hiq the p(u)
now dependson the meshsizeh. As a consequencehe MAP estimatorsde-
rived with these priors are invariant under change of the image resolution
only with appropriate rescalingof the parameters.

For the sale of notation we extend the sumover (i;j) 2 | to a sum over
(i;J) 2 1. Note that we have

X X
I Ui I nhUj; 10
(i )21 (i )2l

for N;M I 1, if the gradierts jr nu;;j are uniformly bounded.
Thus we make an appraximation of O(h) whenreplacingp(u) by

0 1
1 X

p(u) = cexp@ ir hui?A (1.47)

2.
prior (|,] )2|
in the caseof a Gaussian-like distribution,

0 1
1 X

p(u) = cexp@ ironuig jA (1.48)

prior (i;j )2|
in the caseof a Laplacian distribution and
p(u) = ¢ ir nugjexp Lt (1.49)
(i;j )2| prior

in caseof a distribution of the form (1.41), respectively.

Let us now set up MAP-estimators for denoising. We conbine the noise
models (1.7), (1.14) and (1.28) with the image priors derived above. We
conceitrate on the following MAP estimators:

Gaussian noise

Let (uj; )¢ij)2 beasin (1.7).
From (1.10) it follows that

NM

X (uy uy)? 1
———"— log —p? . (1.50)

logp(u ju) =

(i)2l
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Choosingprior (1.47) we have

0 1
1 X .
logp(u) = @2 . jr nuij j?A  logc: (1.51)
prior (i;j)Zl
Inserting (1.50) and (1.51) in (1.6) we derive with = 2_2 >0
prior
argmin (Uij  Uy)"+ Jr nUi]
u2RN M (i )21
1 NM
logc log —p? : (.52
. NM . . . . .
Since logc log aslT is constart, the minimization problem
(1.52) is equivalert to
X
argmin (Ug  Uy)?+ r nugj? (1.53)
U2RN M (i )21
Sampling point errors
Let (uj; )¢ij)2 beasin (1.14).
From (1.26) it follows that
logp(u ju) = * M log —pl— NM' (1.54)
J 2 2j|’ hUi;jjz 2 . .

(@i)2l

As for the example of Gaussiannoise we use prior (1.47). Inserting
(1.51) and (1.54) in (1.6) resultsin the problem of determining

0 1
X U: U.)>?
argmin @ (2”7”3 jr Uy j°A
UZRN M I hUi;j |
1 NM
logc log —p? ; (1.55)
with = 22—2 > 0, or equivalertly

prior
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S T
X U.  U. )2
argmin @ ( o ”2) jronuig j2A (1.56)
u2RN M (i )2! 2jl’ hUi; |

Sampling point errors with additional Gaussian noise

Let (U )ij)z be asin (1.28). We use the conditional probability
density function determinedin (1.35). It follows that

| X (uy Uy )? 1 "M
ogp(u ju) = PETE log —p— : (1.57)
(i )21 Il nUij | 2

Using prior (1.48) we have that
0 1

logp(u) = @1

prior

jr nuij jA  logc: (1.58)
(i )21

Inserting (1.57) and (1.58) in (1.6) we derive
!

X (g uy)?* . 1 NM
argmin — Jr Ui logc log —p— ;
waRN M o A nUi ) 2

(1.59)
with = —— > 0.

prior
NM
Omitting the constart term  logc log - in (1.59) we derive
the equivalert optimization problem

X (Uij U )?

argmin . -
J 2jr nUijj

N M
u2R® M ()21

JronUigj (1.60)

Sampling point errors with log-prior

Again we assumedata with samplingpoint errorsand additional Gaus-
sian noise. Let (u;; )(ij )2 beasin (1.28).

We use logp(u ju) asin (1.57) and the log-prior (1.49) with q = 1,
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which gives
0 1

logp(u) = @1

prior (i;j )2|

jronug jA

X
log Jr nuijj logc: (1.61)

(i )2l
Inserting (1.57) and (1.61) in (1.6) and omitting the constart logc
NM
log -t~ , we derive

!
X (Uij Uy )?
argmin —— U7

- —+ jrpuij logjr nuiij (162
UZRY M i)al 2r nuij | I nthiy | 9Ir nUij J ( )

with = —2>0and := 2

prior

Yet we consideredonly four of the possibleconmbinations of the three noise
models(1.7), (1.14) and (1.28) and the four priors (1.45), (1.44)and (1.41) to
derive a MAP estimator. Table 1.2lists the di erent formsforf (u u ;r u)
for all twelve MAP estimators.

All theseMAP estimators (see(1.6)) are of the form
X

argminF y(u) := argmin f(uij U 5r Ui j):
u2RN M u2RN M ..
()2l
wheref(;a) :R R! RJ[ f+1lg . We obsene the following relation

between MAP estimators and regularization: Speakingin terms of regular-
ization theory, function f ( ;A) consistsof a \ t-to-data” term

X X (u U.. )2
(uj uy)% or 72': TR
(i )2l iz A" nlil
with p = 1;2 and a regularization term
0 0 1
X X X
jr nuij% or @ jr nug jOA @ logjr nui; jA
(ij 2! (i )2! (i )2!

with g = 1;2 and regularization parameters ; > 0.
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f(us  U.:jr pUii] Gaussianprior Laplacian prior
bl ;] )
Gaussiannoise jui U Pt r nug? o jug o ug P+ r pugj
li int juij Uy J? i 2 Uy Uy e g
sampling point errors ETaT jr nUijj T jr nUijj
s.p.e. plus Gaussiannoise juig Uy I® ir pU;i j2 i Uy 1® ) ir nUii |
P-€.p ar pugj 0 i) 2wy )0 nUi)
f(Uy U 5r Ui ) log - prior, (= 1;2)
Gaussiannoise JU;; ui;jj2+ r nug;j9 logjr nuij |
juij uy J?

sampling point errors Zrou, e b0 nug % logjr nuij

s.p.e. plus Gaussiannoise %+ jr nug; j9 logjr nuijj

Table 1.2: Using one of the conditional probability densities (1.10),
(2.26) and (1.35) together with one of the priors (1.47), (1.48) and
(1.49) in (1.6); we derive twelve di erent MAP estimators of the form
argmingagy v Gy f (Ui U 5gr nUigj), wheref(;a) : R R R]J
f+1g .
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Chapter 2

Numerics

Let us give a short overview of the cortents of this Chapter:

In Chaptgr 1 we have consideredthe minimization of discrete functionals of
the form .y, f (Ui Uy ;ir uijj) fordatau givenonanequidistart grid
with meshsizeh = hg > 0 asde ned in 1.2.
We slightly modify thesefunctionals by multiplying f ( ;a) with h". Let
X
Fn(u) = h" f(Ui;j Ui Jr hUj; D; (2.1)
(i )2l
wheref ( ;a) is oneof the functions introducedin Chapter 1.
We compare(2.1) with the cortinuous functional on WP() given by
Z
F(uy= f(u u;jru):

In particular we are interestedin
z
(u u)® . .
F(uy= ———+ jruj¥ =12 2.2
(u) Zrup T ru P (2.2)
Theoretical results (seeSection 2.2) motivate to investigate the convexi ed
functional 7

Fouy= f%u u;jruj); (2.3)

instead of F (u), wheref ¢( ;a) is the cornvex ernvelope (see[16]) of f ( ;a)
with respect to a.

One can shov that ead minimizing sequenceof F °(u) has a subsequence
corverging to someu 2 BV() (p= 1)oru 2 W¥2() (p = 2), where

31
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BV() isthe spaceof functionson with boundedvariation, see[20].
Thuswereferto (2.2) asthe Non-Convex-Boundd-Variation (NCBV)-funct-
ional in the casep = 1 and asthe Non-Convex-Hilert-space (NCH)- funct-
ional in the casep = 2.

Corresponding to (2.3) we considerthe discretefunctional

X

Fh(u)=h" FCui Uy 5dr Ui §)

(i )2l
and show that undersu cient conditionsonf ¢( ;a) andonjr y:j the discrete
functional F | (u) is consisten with F °(u) in the following sense:
We considera re nement of the grid with (N, 1) (M, 1) grid cellsof
size0 < h hg, wherehy denotesthe meshsize of the grid we start with.
The index set of the grid nodesis denotedby

The data u areinterpolated on the ner grids.

For
up ;= argmin Fp(v);
v2RNh Mp
we show that
H C | ) = H C .
Ll!mth(uh). F.: VZV\I/Q:I:)() F®(v):

Let us give a short sketch, how the consistencyis shovn (The theory is pro-
vided in detail in Section2.3):

Assuminga local Lipschitz-continuity onf ¢( ;a), we prove that F °(u) is con-
tinuouson WXP() and F{(u) is cortinuous on RN» Mn seeLemma 2.3.2
below.

Continuity of F f(u) and a coercivity condition on f ¢( ;a) assertthat a min-
imizer of F ¢ (u) for xed h exists, seeLemma2.3.3.

Consistencyfollows by showing
(1) limsupF(uy) F.. (seeTheorem2.3.4)
h! 0

(2) Iirrn i(r)wf Fi(up) F.. (seeProof of Theorem2.3.5)
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To prove (1) we consideran elemen u,, of a minimizing sequencey of F ¢(u),
sud that F(ux,) Fun + z We appraximate uy, by a smooth function o
and set i = U’(Xi;j ); (I, ]) 2 Iy Let uy, = (U’i;j )(i;j )21 - We show that for
ewery " > 0 there existsh; > 0 suc that for0< h< h;

JFR()  Fuw)i 5

2
and thus
Fi(o) Fon +™ (2.4)
From (2.4) it followsthat forO< h  h;
Fr(uy)= min Ff(u) Fi(e) Fu+™
u2RNh Mp

For proof of (2) we considerinterpolations u, 2 W*P() of u,. We require
an additional assumptionon the interpolation: We assumethat for ewery
" > 0 there existsh, > 0 sud that for elery 0< h  h, we have

Foun)  FRun) + " (2.5)
from which (2) follows (seethe proof of Theorem2.3.5).

Moreover, we shav that a sequencduy,), satisfying the above assumptionis
a minimizing sequencef F °(u), seeCorollary 2.3.6.

It remainsto show that sequencesgu;), satisfying (2.5) exist. We construct
sud sequencedor the NCBV- and NCH- functional for speci ¢ numerical
shemesjr ,:j in Section2.4.

In Section2.5we descrike two implemertations for minimizing the (discrete)
NCBV-functional.
The rst oneis basedon a steepest desceth on F{(u). Sincef ¢( ;a) is not
di erentiable, we appraximate f ¢( ;a) by a di erentiable function f-( ;a).
The secondimplementation is a FE-method solving the optimality condition
of

argmin F ¢(u)

u2Wip()

numerically.
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2.1 Grid Renemen t

Let hg > 0. We assumethat R" is of the form

O;hg (N 12)); forn=1;
(O;hg (N 1)) (O;ho (M 1)) forn=2;

wherehy > 0and N; M 2 N, seeSection1.2.
Wedene Ly := ho(N 1),Ly:= ho(M 1)

The above assumptionon  allows to consider an equidistart grid with
quadratic cells of sizeh, and grid nodes(x{} )¢;)2 2  asin Section1.2.

Moreover let u 2 W%t (). Then by TheoremA6.12in [1], u can be con-
tinued for given" > 0 to a W' - function (also denotedby u ) on B-().
By Theorem 5, Chapter 4 in [20] u j— is Lipschitz-continuous on  with
Lipschitz-constart C.  Cku ky11 () .

In particular we canewaluate u (x) foreadx 2 . Letu = (U (Xij ) )2 -

Additionally we considera re ned grid on  with meshsizeO< h  hy and
N, My nodes,where

Ny = %+ 1 My = %+1 (casen = 2 only):
We denote
In:=1f(;))ji=21::7;Np; ) = 1,00, Myg
Lo := max(N hg; M hg): (2.6)
Let

Up o= (U (Xi ) izt o

2.2 Contin uous Form ulation

Let > O be aregularization parameterand p = 1; 2.

Correspnding to the discretefunctional
X
Fn(up) := h" f(uy Ui ir nUigj);
(i )21



2.2. CONTINUOUS FORMULATION 35

wheref( ;a):R R! RJ[ f+1g isdened asin (1.53), (1.56) or (1.60),
that is, f ( ;A) is either one of the functions

f(;a)= %2+ a2 (2.7)

or
2

f(id)= 5o+ Ja%  p=12 (2.8)

we considerthe cortinuous functional given by

F :Wl;pé) | R[ f+1g

: : (2.9)
F(uy= fu®) u)jr ux)j) dx:

For the function
2

f = —+ ja¥ =12
(;ja) = Zap T A PEL
we note the following:
Sincef ( ;a) 0 we have
lim |nf Fh(u) 0; and I|m inf F(u) O

u2RNh WP ()

For the discrete minimization problem, in order to prove the existenceof a
minimizer of F,(u) for xed h > 0 (seeLemma 2.3.3 belown) a coercivity
condition on f ( ;a) and the lower cortinuity of f ( ;a) are required.

In the cortinuous case,in order to prove existenceof a minimizer of F (u),
the weakly lower semi-coninuity (see[16] for the de nition of w.l.s.c) is es-
sertial, see[27]. As shown in [16],a su cient condition for the weakly lower
semi-cotinuity is that f ( ;jaj) is convex with respectto a.

Note that f ( ;a) = W + jaP doesnot match theserequiremerts.

To overcomethis problem we de ne
Fe. Wl?p&) I RS

; . . (2.10)
Fou):= f5u(x) u (x);jr u(x)j) dx;

where f ¢( ;a) is the corvex hull of f ( ;a) with respect to a (see[16]) given

b

y N T
fo( ;a) = ZJam_ /

2.11
2] else: ( )
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f(2,a)

Figure 2.1: Functionsf ( ;a) andf ¢( ;a) plotted for = 2anda= 5;:::;5.

For the reader'scorvedﬁiencethe graph of f ¢( ;a) is plotted in Fig. 2.1.
Note that f ¢( ;a) s i+ jaP, thusFu) < 1 foru2 W*P() and
u 2 wtt ().

The discretefunctional corresmpnding to F °(u) is given by
X
Fh(u)=h" FEui gy 5dr nUig J) (2.12)
(i )21 n

instead of F,(u).

In the case p = 2 we have the following result:
Theorem 2.2.1. Letu 2 W' () and
FC:Wl;Zé) I R}

Fe(uy=  fSu(x) u (X);jr u(x)j) dx; (2.13)

with f ¢( ;a) being convexwith respect to a and coercive, that is that there
existscy > 0 suchthat for all ;a2 R
cofi 2+ 8% o ;a): (2.14)

Moreover we assumethat
FC(u)<1: (2.15)

Then F ¢(u) attains a minimizer in W2() .
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Proof:
Sincef ¢( ; a) is corvexwith respectto a, F °(u) is weakly lower semi-comin uous
on W2(), see[16].

Let u, be a minimizing sequencef F ¢(u) in W¥2(). Without lossof gen-
erality we assumethat

FCuy) F%u)= C;
with C < 1 by assumption(2.15).

Due to the coercivity of f ( ;a) given by (2.14) we have
Z

1 C
e U j?+jr uj®> =F%u) = 2.16
JUk J7F ) Uy & (u) % ( )
Moreover, sincea? 2(a b2+ 21?7 we have
Z Z
jug? 2 jue uj?+ 2ku K2 (2.17)

From (2.16) and (2.17) it follows that
2
kuk?, + kr uck?, g + 2ku Ky 2:

and thus the the sequencauy is boundedin W%2().

The re exivity of W'2() allows to choosea subsequencealso denoted by
u, cornverging weakly to someu 2 W?2(). Usingthe weakly lower semi-
cortinuity of F°(u) it follows that

FSu) Iilr(rlllinf F (uy)

and, sinceuy is a minimizing sequencey is a minimizer of F (u).

For the functions de ned in (2.7) and (2.8) (p = 2) we have:

f(;a) =] j?+ jaj?iscorvexwith respectto a, thusf ( ;a) = f ¢( ;a),
and satis es (2.14). Moreover we have F°(u) < 1 . Theorem2.2.1
shavs that F¢(u) = F (u) attains a minimizer in W2().
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For f ( ;a) asin (2.8) with p= 2 we have F (u) 6 F°(u), but F°(u) is
a relaxation of F (u), see[27]. It can be easily shavn the assumptions
of Theorem2.2.1are satis ed. Thus F ¢(u) attains a minimizer.

We refer to minimizers of F¢(u) as geneanlized minimizers of F (u),

sinceif a minimizer of F (u) exists, it is alsoa minimizer of F ¢(u).

In the case p = 1 we haveto considerR (F ; W())( u) dened onBV()
asfollows:

Let u2 BV(), sud that a sequencan W¥() LI-corvergingto u exists,
then

R(F;WX())( u) := inff lim ig}fF(uk)j(uk)k W) :kue uk.:! Og:
Otherwise we de ne
R(F;WH())( u):= +1:

In [27]it hasbeenshavn that

z
R(F;WH() = Fgy(u):= f%u u;jru)+ jD°uj()

= FSu)+ jD%uj() ;

whereDu = r u dx + D*®u is the Lebesguedecompsition of the distribu-
tional gradiert of u, seeTheorem2 in [27], and that a minimizer of F 5, (u)
exists, seeTheorem1 in [27].

We refer to a minimizer of F §,, (u) asa genearlized minimizer of F (u).

Moreover it hasbeenshown that
FEy(u) = R(FSGWEY()) ; (2.18)

seethe proof of Theorem 2 in [27]. In particular we have from (2.18) that
for a minimizer u 2 BV() of Fg,(u) there exists a sequence(uy)
W3EL() skue u ks ! Osud that

Fey(u)= Iirkq ig}f F (uy):

As a consequencé is su cient to considerminimizing sequence®f F °(u)
in Whi().
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2.3 Theoretical Results

The scope of this sectionis to provide theoretical results to comparea con-
tinuous functional

FEIWER() 1Ry
. . (2.19)
FC(u)y= fSu(x) u (X);jr u(x)j) dx;

wheref ¢( ; a) is cortinuous, non-negative and corvex with respectto a, with
the correspnding discretefunctional
F&:RNh Mn !XRg
FiR(un) = h" Uy Uy ir nuig ): (2.20)
(i )21 n
For a given numerical schemejr ,:j we de ne the operator G : RN» Mn |
RNn M py
G(u) == (Jr nUij Dej)zrn (2.21)

On jr 1:j we make the following assumptions:

Assumption 2.
(a2) For everyu 2 C¥() wehave
jr nuig  rou(xij)j = O(h):
(a3) G(u) dependscontinuously on u = (ll,li;j i)z .- (We

- P o N. M
usethe norm jvj, := ()2, IV JP 7 on RT M)
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The following assumptionsare madeon f ( ; a):

Assumption 3.

(a4) Local Lipschitz-continuity of f ¢( ;a):
there existsC > 0 only dependingon , suchthat

(
. . Cj i if p= 1
ite(;a) f°(;a)j L o
(C(JJ+JJ)J j ifp=2
Cja b if p= 1

it°C;a) 50 ;D) o
C(jaj + jh)ja b if p=2
(a5) Ceoercivity and Growth-@ndition of f ¢( ; a):
there existq 2 1;29;0 < ¢  Cp; independentfrom ;a,
suchthat

Co(j 9+ ja?) f(;a) Co(j j*+ jaf):

Remark 2.3.1. Note that from (a4) it followsthat

it fe(sa)) CA+jj+iDi

if;a) f°(:bj C(+jaj+jb)ja b
For the main results of this Section we require that F °(u) and F}(u) are
cortinuous. Let us show that assumption (a4) on f ¢( ;a) is sucient for
the cortinuity of F “(u) and F ;(u). (Note that (2.82) is not su cient to pro-
vide cortinuity in the casep = 1, sincein general (1+ juj+ jvj)(jv uj)
Cku vk : doesnot hold for u;v 2 L().)

(2.22)

Lemma 2.3.2. Letf¢ ;a):R R! R; satisfy assumption (a4) . Then
F °(u) is continuous with resgect to the topology induced by the W P-norm
and F{(u) is continuous with respct to the topology induced by the norm

P 1
jVjp on RNh Mn given bYJVJp = )20 jVi;j jp P on RNn Mn

Proof:
1) Continuity of F °(u):

Let u;v2 WEP(), v! u with respectto the topology inducedby k:kys.
Without lossof generality we can assumethat there is ¢> 0 sud that

kawl;p kUkW 1p + C. (223)
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Using assumption (a4) it follows for p = 1 that

JFe(U) , FEW))

FEue)  u ()ijr u()i)  FEv(x)  u (x);ir v(x)j) dx
Z

C  f5ulx) u()sjr u(x)i) FEv) U (x)jr ux)i)
Y FEvx)  u () ;(X)i) FEv(x)  u (x);ir v(x)j) dx

C jux) v(x)jdx+ jru(x) r v(x)jdx;

which provesthe cortinuity of F (u).

In the casep = 2 we have

JFC(u) - FE(v)j (2.24)
FEUC) U ()sjr u()i)  FEv(x)  u (x);jr v(x)j) dx
Z
C foulx) u()sir u(x)i) V) u (x)r ux)i)

’2 FEve)  u Oiir u()j)  FEv(x) U (x)5)r v(x)j) dx

C ju(x) u@)j+jv(x) ux)j jux) v(x)jdx
Z
+ jrux)j+jr v(x)j jr u(x) r v(x)jdx:

We have
Z
jux) u (x)j+jv(x) u(x)j ju(x) v(x)jdx
Z (2.25)
jux)j + jv(x)j + 2u (x)j ju(x) v(x)j dx:

Moreover using the Caudy-Sdwarz inequality for L2() (see[1]) and
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(a+ b2 2a%+ 27 for a;b2 R, we nd that

Z
Ju)j + jv(x)j + 2iu (x)j ju(x)  v(x)j dx (2.26)
Z 1 Z L
C ju(x)j + jv(x)j + 2ju (x)j * dx ju(x)  v(x)j* dx
Z 1

C ju(x)j? + jv(x)j? + 2ju (x)j?) dx "k VK, 2

1
2

= C ku(x)k?z + kvk?, + 2ku kZ. “ku vk

| | | Yoo P ...
Inserting (2.26) in (2.25) and using that oy 8 =1 Ja], it follows
that Z

jux) u(X)j+jv(x) U (x)j jux) v(x)jdx

(2.27)
C(kukg 2 + kvk 2 + 2ku k 2) ku  vK_2:
Using the Caudy-Sdwarz inequality we nd
Z
Jrux)j+jr v(x)j jr u(x) r v(x)jdx
C kr uk?, + kr vk?, Pkru o rovke (2.28)
C kr uk 2+ kr vk 2 kr u r vk 2:
Using (2.27) and (2.28) in (2.24) it follows that
iFC(u) FS%vVv)] C kuk_z+ kvk 2+ 2ku k.2 ku vk
JF5(u) (V)] L2 L2 L2 L2 (2.29)

+C kr uk 2+ kr vk 2 kr u r vk z:
Finally, using (2.23) it follows from (2.29) that
jFS(u) F%Vv)j C(u) ku vkiz+kru rvk:;
which provesthe cortinuity.
2) Continuity of Fy:

Let u;v 2 RN» Moy I u with respect to the norm j:j,. Without loss of
generality sinceG(:) is cortinuous we can assumethat there is ¢ > 0 sud
that

Vip Juipt e jGMWip  G(Wjp+ ¢ (2.30)
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For p= 1 using (a4) it follows that

X
jER(U)  FR(v)j h° Ui U sdr muig ) (v uygsdr Vi )i
(i )21 n
X
ch" JUij  VigJ+ r nUij o Jr nVijj
(i )21 n

Chju  vji+jG(u) G(V)ju:

The continuity of G(u), seeassumption (a3) , providesthat G(v) ! G(u)
and thus the cortinuity of F ;(u) follows.

For p= 2 we have with (a4) that

jFR(u) F;((V)J'

h" FoCuiy Uy sdr muig ) (v s Vi)
)3, n (2.31)
Ch" juij Ui Vi Ui Jojui o Vi .
()21
+ 0 pU J 00 nVig o 0 nUig ] Jr nVig
We have X
h" juij ui;jj + Vi Ui Jojui Vi
WE e (32
h" JUig J+ jVig I+ 20U ) Juig Vi ]
()21
and with the Caudy-Sdwarz inequality for RN» Mn (see[1]) and
(a+ b2 2a%+ 27 it follows that
n X - - - - - - - -
h JUig ]+ JVig |+ 20U ] JUij  Vig )
()21
X 2
h" jug 2+ jvig 12+ 2ug 2 Cju vy (2:33)
(i )21

= h"(juj3 + jvi3+ 2ju j2)7 ju Vi

Moreover we nd with the Caudy-Sdwarz inequality for RN Mo (a+ b)?
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2aZ + 217 that

X
h" JronUig J+0r aVigJ Jr nUigl Jr nVig )
()21 n
X X o 2 3
ch" it oaU %+ r v j? IrnUig ] Jr nVig
()2l ()21 n

Ch" jG(WiE+jGW)i3 " jGu) GW)ix

(2.34)
Inserting (2.33) and (2.34) in (2.31) gives
jFg(u) Fe()i Ch™ jui+jvid+ 2uj3 “ju vi,
. (2.35)
+ Gz + Gz *iG(u) G(V)iz :
From (2.35) it follows with (2.30) that
JERU)  FR(v)j  C(u)h"(u  viz+jG(u) G(v)j2): (2.36)

From (2.36) together with the cortinuity of G(u), seeassumption (a3) , the

cortinuity of F§(u) follows.
0

In view of shawving consistencybetweenF ¢(u) and F(u) let us prove that
the minimizers of F{(u) exists:

Lemma 2.3.3. Let h > 0 be xed and F{(u) as de ned in (2.20), with
f ¢( ;a) satisfying the assumptions (a4) and (a5) . Then there exists a
minimizer of F [ (u).

Proof:
Let uy 2 RN» Mn pe a minimizing sequenceof Ff(u). Without loss of
generalit, we assumeF(ux) Fj(u) < 1. From (a5) it follows that
there existsg2 N and ¢y > 0 sud that
X
coh" (Wi Wy © FR(u)  FR(u):
(i )21 n

Thusit follows for every (i; ) 2 1 that

. 1

: ~C
juiy — uy j° WFﬁ(U):- G hr
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and, sinceja 2ja W9+ 2jh9for a;b2 R; q= 1;2, it follows that

J(ui)i; j° G hr + 2ju;; i
Thus the sequencdu,)y is boundedin RN» Mn and we can extract a subse-
quence alsodenotedby (uy)k, convergingto someu 2 RN» Mn - Assumption
(ad) onf ¢( ;a) assertsthe cortinuity of F ;(u), seeLemma2.3.2,from which
Fr(uk) ! Fg(u) follows. Since (uk)x is a minimizing sequencet follows
that Fr(u ) = ming,gv, v, Fr(U).

0

Lemma?2.3.3assertshat for any sequencdy, ! Owecan nd up, 2 RNmnMns
minimizing F{ (u).

Note that the vectorsuy, lie in di erent vector spaceRN» Mn andthuscannot
compareddirectly, but only after interpolating u, onthe correspndinggrids.

The rst stepto prove consistencyof Ff(u) with F°(u) is to shav that the
limes superior of the sequence- | (up,) = min Fh (V) lies belov
Fon 1= infuowie(y FE(U):

N M
v2R Pk hk

Theorem 2.3.4. Let F°(u) and F{(u) asde ned in (2.19) and (2.20), with
f ¢( ;a) satisfyingthe assumptions(a4) and (a5) .
LetF.. = infuzwl;p() FC(U). Then

limsup min  Ff(u) Fu:
ht 0 u2RNh Mn

Proof:

Let us prove the statemert for n = 2:

Let " > 0. Let (u)x 2 WEP() be a minimizing sequenceof F ¢(u), from
which we depict ui,, sud that

FéUeo)  Fan * 5 (2.37)
SinceF °(u) is cortinuous(seeLemma?2.3.2)and 91 () isdensein WP(),
seeLemmaA 6.7. in [1], we can chooset 2 C! () sud that

JF%(ug) FAE) 4 (2.38)

Let Hu(x) we the Hessianof & and & = (t(Xi; ) (i )21 , -
Let Q 2 Q denotethe grid cells.
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We have
J'Fﬁ(bf)x F °(a)]
h? foCth; Ui sr mtegf)  FO(e(Xig) U (Xig)sdr ed(Xig))
ii)20 | _{ﬁ }
h2 X X . o A . .
iy fole(xiy) U (xi)sgr (X )i) ch(bf(X) u (x);jr e(x)j) dx
Q2Q x;; 20
z
Z{Tz }
3, X .. . .
+ —h fo(ehy Uy bk )
—u2° g }
= T3

Term T is an error term concerningthe di erence betweenr u(x;; ) andthe
numerical shhemer u;; , term T, descritesthe di erence betweenexact in-
tegration and a quadrature rule and Tz descrikesadditional terms concerning
the boundary nodesof the grid.

For T, we have the following estimates:
For p= 1, sincet;; = &(X;; ), it follows from (a4) that

X
T, Ch Jronthj] jroe(Xi)j
()21
and for p = 2 that

X
T, Ch? Jronthg j+Jr e(Xi )] Jr et Jroe(Xig)j
()2l n

Sincett 2 C! () we canuseassumption (a2)to nd h; > 0, sud that for
every0 h hpyandewery(i;j) 21y

Jronbhg ] Jr e )i+ L (2.39)
Thus

T Ch®°NyMy (kr tky + 1) sup jr nt(Xij)j jr e(Xij)j
(i )21

Note that h2N,My  L2.
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Since jr ntHXi; )] jr (X )] = O(h), seeassumption (a2), we can nd
h, > Osudh that forp= 1;2andall0< h h;

T (2.40)

1—2:
To estimateterm T, we note that f ¢( ;a), and u are cortinuous, thus for
eath Q wecan nd y 2 Q sud that
1 X . . . . .
2 fleXig) U (i )sdr exig )i) = Fo(e(y) U (y);ir e(y)i);
Xij 26

wherex;; 2 Q are the verticesof squareQ. Thus

X Z
T, fee(x) u (x);jr e(x)j)  Fo(e(y) u (y);jr e(y)j) dx
Q2Q ZQ

X
fee(x)  u (X)ijr e(x)j)  F(e(y) u (y):jr (x)j)
Q2Q Q@

+ Fe(y)  u(y)ir w(X)j)  F(e(y) u (y)iir w(y)i) dx:
Assumption (a4) providesfor p= 1;2 (seeRemark 2.3.1) that

5 (@) CA+ji+iDi ]
jf°C;a) f(;b] CQ@+jaj+jb)ja B

and thus it follows sincet2 C! () andu being cortinuouson  that
X Z
. C (1 + ju(x)] + je(y)] + ju (X)j + ju (¥)j)
QQ ©
(Je(x)  w(y)j+ju (x) u(y)i)
+(1+ JFXUOQJ' +r ey r w(x) 1 e(y)j dx (2.41)

C(eu) ja(x)  w(y)j+ju(x) u(y)
QQ ©
+jr t(X) r y)j dx:

Let C, := max(kr uk; ;kHuk, ;C_), whereC_ is the Lipschitz-constart of
u. Then

j#(x)  wy)j+ju(x) ui+irwx) ruy) 3Ch: (2.42)
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Inserting (2.42) in (2.41) gives
T, C(wu)j jCh:

Wecan nd h; > Osud that forallO< h h;y

Finally, to estimate T3, using (2.39) and assumptions (a2) and (a5) gives
_ 3 2 c i i
Ty = Zh f (U‘,;j ui;j U nt J)
RO x
C(t; u )h? Jij ]+ U]+ 0 nthj)
Xi§<2@
C(tt;u )h? e ]+ Juig j + Jroe(xi; )i+ 1
Xi;j 2@

C(t;u ) 2(Np + My) h?;

where @ denotesthe boundary of .

SincehNy; hMy Lo, we have T3 = O(h). We choose0 < hy4, sud that for
O<h hy

1—2:
Now let hs := min(hy; hy; hs; hy), then we have from (2.40), (2.43) and (2.44)
that forh hsg

T3 (2.44)

JF(e) Fr®)] T+ Te+Ts o (2.45)

and using (2.38)

JF(u)  FRe)] JF ()  FE)j+ JF(e)  Fi(w)] (2.46)

I\).l.

It follows from (2.46) and (2.37) that for h  hg

Fﬁ(u) Fc(uko) + é I:min +'"

Thus

min Fr(e) Fo,+™
u2RNh Mp

The proof for n = 1 is analogous. O
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The secondstep to showv consistencyis to ched if the limes inferior of the
sequencer , (Un,) = min _ wy my, Fp (V) liesabove F o, .

With the proof of the next Theorem we seethat a su cient condition for
liminfp,, oFﬁk(uhk) F.. is that for given " > 0 and h being small
enoughan u, 2 WYP() of the discrete data u, can be found sud that
limp oFE(un) = Fuy). Let usformulate this assumptionmore precisely:

Assumption 4.

(a6) LetF(u) and Fi(u) asde nedin (2.19) and (2.20).
For h! 0O and (un)y ke givenby

up := argmin F§(u)
u2RNh Mn

and every" > 0 there existsh; > 0 suchthat for every
O0<h hywecan nd u, 2 WEP() satisfying

Fe(un)  F(un)+

From liminf,, oFp (un) Fun. andlimsup,, oFp (un,) Fu. thenit
follows that limy, o F§(up) = Fo:

Theorem 2.35. Leth! 0 and (uy), be givenby

up := argmin F§(u)
u2RNh Mn

with f ( ;a) satisfyingassumptions(a4) and (a5) .
Moreover let assumption (a6) be satis ed.

Then
rI]i'mOF‘;,(uh) = Fon . (2.47)

Proof:
Let " > 0. Theorem 2.3.4 provides the existenceof h; > 0 sud that ewery
up with h  h; satis es

Fl(':](uh) I:min +":

From assumption (a6) we have that there existsh, > 0 sud that for every
h  h, up existswith
Fi(un)  Fun) ™ (2.48)
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From (2.48) it follows that
Fr(uy) Fun ™
ThusjFf(u) F..j " forh min(hg;hy). O

Sofar we have not beenable to prove assumption (a6) for arbitrary func-
tions and numerical schemesjr :j. We do this for specic functionals and
numerical shemein Sections2.4.1and 2.4.2,using su cien t interpolations
of the data uy,.

For a sequenceof functions u,, asin Theorem 2.3.5we can shov alsothat it
is a minimizing sequencdor F °(u):

Corollary 2.3.6. Let (up)n be a sggquene as in Theorem 2.3.5 satisfying
assumption (a6) . Then (up)n is @ minimizing sequene of F °(u).

Proof:

Let" > O.
From assumption (a6) we have that there existsh; > 0 sud that for 0 <
h hy

FSun) Fg(up)+ > (2.49)

and from (2.47) we have that there existsh, > 0 sud that forO< h h,

FR(Un)  Fu +35: (2.50)
From (2.49) and (2.50) it followsthat for 0< h  min(hgy; hy)
Foun) Fun+"
0

The above results shav, that minimizing F ;(u) for h! 0 and interpolating
the discreteminimizersuy, in a way, that assumption (a6) is satis ed, leads
to minimizing sequencdor F °(u). Moreover we have FE(u) ! F, .
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2.4 Examples

Let us shav that assumptions(a4) and (a5) are satis ed for the functions
f¢ ;a) denedin (2.7) and (2.11):

Example 2.4.1 (Additiv e Gaussiannoise) Let us recall the functional for
denoisingimageswith additive Gaussiannoise:

X
F h(u) = h" f (Ui;j ui;j ,Jr hUi;j J)l
(i )21 n

wheef( ;a)= 2+ a2
Note that f ( ;a) is convexwith resgect to a, thusf ¢( ;a) = f ( ;a) and con-
sequently F°(u) = F (u); Fg(u) = Fp(u).

It is easyto seethat f ( ;a) satis es assumptions(a4) and (a5) with p= 2.

The corresmnding continuous functional on W%2() is given by
Z
Fu= f(u u;jruj

de ned on W¥?() .

Example 2.4.2 (Errors in sampling points). The function

C . P
fo( ;a) = W:_J.alp it 2 jaP>jj;
2] else;
with p = 1; 2 satis es the assumptions(a4) and (a5) :

Assumption (a4) : Sincef € is continuous, it is su cient to chek the as-
sumption on the domains

D, := f( ;a)2R2:p2_jajp>j jo;
whee f¢( ;a) = ﬁ+ ja? and
D,:=f( ;a)2 RZ:IOZ_jajp i g

whee f ¢( ;a) = IOz_j i, seprately.
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For ( ;a);( ;a) 2 D; wehave

.I:C . fC . — - -
(;a) (;a) 21a1p+ Jia ( )
i Pz
and 55 55 are boundel by —-. Thus
o) fCia) "2 (2.51)

Let( ;a);( ;b 2 D;. For thecasep= 1we nd that

2 2
-fc ;a fc ,b: —_— + jaj e in
ite( ;a) (@] %3 jaj 2 io
2 2
2jajjb 3 1b 2jaj jb ja b
P

and 5 is bounded by |, since (7 <~ 2 and < 2 . Thus
ife(ia) fo(ibi=2 ja b

Analogouslyfor the casep = 2 we have

G b= ot I
Wjjbiﬁ jaji*  jbf
st AN
st (A b

is boundel by , since L. < p2_andjjbj—.j2 <P7 Thus

jaj

jf°C;a) f°(;Bji=2 (ja + jb)ja by

2
and gy

On D, we havefor p= 1;2

™|

itoCa) A= 2 g ] (2.52)

and
f(;a fY;h=0
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Assumption (a5) : If p2_jajIo > j j we have
r_ r_
f°C;a)  jaP> Ejajp+ §J' joomin - = (jj+jaP)

and

) r
o oy = b L b NG 4 iaiBY-
f*( ;a) —2jajp+ I 2“+ 1 max( ; 2)(JJ+JaJ ):

r_

If IDz_jajlo j j we have

()= 2]
r __ r __ r __

_. . . —— .p: _. . . p
211r+ 5 2 jaj 51+ a
min > (4 j+iaP)
and
P— . P— .
fe(;a)= 2j] 2 (jj+iaP):

Thus we set
r

Co := min Co := max( ;p2 ):

2 8
U

Note that we have proven a stronger statementthan (a4) , namely that for
; ;a2 Randp=1;2

itoia) A T2z (2.53)

see (2.51) and (2.52), whichis usal in the following Sections.

2.4.1 One-dimensional NCBV-F unctional

In this sectionwe considerone-dimensionaldata and f ( ;a) asde ned in
(2.4.2).

For the discretefunctional we have to specify jr :j In our rst examplewe
useone-sideddi erences:
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Example 2.4.3 (One-sideddi erences). Letx; = (i 1)h; i = 1;:::;Np; h =
Lx -, u 2 RN and

Np 1?7
. . 1. . .
Jr nuij = HJui+1 uj fori=1;:::;N, L
. .1 y
Jr nUn,] = HJUNh Un, 1)-

Note that have decided to use a left-sided di er ence to de ne jr puy,j. Al-
ternatively one could x uy or setjr huy,j = 0, whichrefersto a Dirichlet
or Neumann boundary condition.

Obviouslyr hu; satis es assumptions(a2) and (a3) .
We assaiate with u 2 RN» the linear interpolation u, i.e. u is continuous,

linear on Q; = [Xi;Xj+1]; 1 = 1;:::;Ny 1 and attains the valuesu; at
Xi;i = 1;:::; Ny, see Fig. 2.2.

u(x)

Ui+1 Ui
Vhu; =———

uz

u
U >

Uy
Us Ug

f f f f f X
0 h 2h 3h 4h 5h
Figure 2.2: Linear interpolation of u 2 RN» on a one-dimensionalgrid. In
this examplewe useone-sideddi erencesfor r u in the functional F (u).

Let ( , p__
2 T o
to(ay= oo AU 2N gy
217 else
and
X
Fr(u):=nh fCu u;jrpugj :
i=1
Moreover, let
un = argminF ¢ (u):
u2RNh
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and un(x) being the linear interpolation of uy,.
The following Lemma states that assumption (a6) is satis ed for up;up.
f ¢( ;a) also satis es the assumptions (a4) and (ab) , see Example 2.4.2.
Thus Theorem 2.3.5 can be applied, stating that Fy(un) ! F,, forh! 0.
Corollary 2.3.6 providesin addition that (u,), IS @ minimizing sejuene in
WLP()  for the continuous functional F ¢(u).

Lemma 2.4.4. Let Fy(u) beasin example2.4.3 and

Z
FCuy= f%u u;jr uj):

Moreover, let

up := argminF{(u)
u2RNh

and u, 2 WYP() the interpolation of u asin Example2.4.3.
For every" > 0 there existsh; > 0 suchthat for 0O< h  h; uy satis es
Fun)  FR(up)+"

P
For proving the lemma, we needan a-priori bound on iNzhl hjr n(up)ij inde-
pendert from h, asprovided by the following lemma:

Lemma 2.4.5 (A-priori bound). Letf ¢( ;a) satisfy assumption (a5) and

X
FR(u) = hfSui u;jr nuij):
i=1
LetC > 0andD RNr suchthat for everyu 2 D
Fi(u) C:

Then for u 2 D we have

X C
hjr nhu;j a"' 2L o;

i=1

where ¢, is the constant from assumption (a5) and L is de ned asin (2.6).
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Proof:
For p= 1it followsfrom (a5) that

Xn :|_)@'1 C
hir puij  —  hfS(ui  usr nuij)
I nUij % ( jr nuij) %

i=1 i=1
which provesthe statemer for p= 1.

For p= 2 we have

Xih
hjr huij2
i=1

" C
hf “(ui ;s jr nuij) % (2.54)

and with (a+ b)? 2a?+ 217 that

Xn Xn
hjr uij h(1+ jr uj)?
i=1 i=1
" s (2.55)
2( hjr uj®+ 2Nph  2( hjr uij?) + 2Lo:

i=1 i=1

Combining (2.54) and (2.55) provesthe statemen of the Lemmafor p= 2.

O
Proof of Lemma2.4.4:
Additionally to F(u) we consider
C I\)Q ! . .
Fo(u):=h fCu  usjrpuj
i=1
Then, sincef (un, Uy, ;if nun,j) O we have
HOREHO (2.56)

Let " > 0. Applying Theorem(2.3.4)onF{(u) we nd h; > 0, suc that for
ewery0O< h h;.

Fr(un) FE(U) Fro+ (2.57)
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For the sale of notation we omit the index h for the ertries of uy.
We have

JFa(un)  Fo(up)j
N 1 z
hf(ui  ujr nuij) o fun(x) U (X);jr un(x)j) dx
i=1 i

% 12
o FOui  upsjr nuif)  FOUR(x) U (X);jr un(x)j) dx:
i=1 i

Note that jr hu;j = jr u(x)j onewery Q;;i = 1;:::; N, 1.
Thus from (2.53) it follows that

p % 17
Fr(un) Fun)j 2 Um0 w0+ ju (0 u ()] dx
i=1 i

Sinceu is linear in ead interval Q; with gradiert r ,u; gnd u F§ Lipschitz-
cortinuouswith constart C, we have with jQij = hand Y% * o, Ox= Ly
that

A
Py Foun)j |2 (hir »uij + C_h) dx
; ‘zthQil ! ! (2.58)
2_ h]r huij + LC, h:

i=1

oreover from Lemma2.4.5and (2.57) we have an a-priori upper bound on
Np 1 hi
i=1 JI hUi):

9 1 i .
hjr nuij hjr nuij a(Fmin +") + 2Lo: (2.59)

i=1 i=1

This a-priori bound together with (2.58) provides that for every " > 0 we
can chooseh; > 0, sud that for every 0< h  h;

iFn(un)  Fo(un)i (2.60)
holds. Finally combining (2.56) and (2.60) it follows that

Fe(u)  F(un)+ " Fi(un)+ "
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We are interested in numerical schemesbeing invariant under the transfor-
mations M (u) := (uq;:::;un,) 7! (Un,;:izug) and M (u ).

For this reasonwe considera secondexample,wherejr ,u;j is basedon cen-
tral di erences and thus depending symmetrically on u.

o given data
o interpolated da
function g,

u(x)

uz

Uy
Up
uz

x1=0 >‘~<2 x£=h §3 xé=2h §4 x:l:3h

X

o e 0

Figure 2.3: Construction of function u, F(u) Fp(u) + " from given data
u = argmin,,gn, Fr(v) onaone-dimensionarid with N, = 4.

Example 2.4.6 (Certral Dierences|). Let

%J“'” Ul = 1
r nuij = Eju'ﬂ Ui il fori=2:::Np, 1
u; uI i
Ui Wy — y if i = Np:
and
h
Fh(u) = feui  uisjr nuij)
i=1
with
;)= pr. ¥ L TR X %)
2] else
Morover let

un = argminF ¢ (u):
u2RNh
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We consider the following interpolation of the data up:

Let (u;up;;:ii;un,) be the entries of u,. (For simplicity of notation we
omit index h for the entries of uy.)

Additionally to the grid points x;; 1 = 1 """ Nh we considerthe mid points of

XitXi 1.

the grid cells givenby »x; 1= =i 2 :INp. Let X; = Xq;%n,+1 = XN, -
We sett; = ug, & ;= =L = ;N and ¢y, +1 = uy,. Moreover, let
Qi = D%l 1= 1100 Ny, seeFlg 23.

Now we consider uy, as the linear interpolation of (tt; t; @2 by, +1)-
Then for u, we havethat

Jr up(X1)j = Jr nuj;

" U‘, sUj+1 + U Ui Ui 1; . ) (262)
i un(x)) = LS L= i wui;

Jr un(Xn, )i = Jr nUn,i:

Note that for u, de ned as alove we have up(X;i) = %(uiﬂ + 2u; + Ui 4),
i =2:::Ny 1, whichrefersto an implicit smaothing of the data uy,.

Lemma?2.4.8 below providesthat (uy), satis es assumption (a6) . Applying
Theorem 2.3.5 and Corollary 2.3.6 it followsthat Ff(un) ! F., forh! 0
and that (uy), WZP() is a minimizing sequene of F °(u).

Numerical tests shaw that usingjr nu;j := j=*:5—] providesunsatisfactory
results, seeChapter 4. We thereforeintroduce a di erent schemefor jr u;j
given as follows:

Example 2.4.7 (Certral Di erences I1). Now let

%]UHl i if i
JUisr  Wij+jui U 4
2h

I
=

r nuij = fori=2:::N, 1

% Jul U; lJ

it i = Np:
h T 1 h
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and
X
FS(u)=  f5ui u;jr nuij)
i=1

with f ¢( ;a) asin Example2.4.7 and

Up := argminF {(u):
u2RNh

Let u, be a linear interpolation of u, asin the examplebefore, then for uy
we havethat

Jr Un(X1)j = Jr nu4j;

fori=2:::;N, 1
. [ PO I b i we
Jr un(xi)j = h = h (2.63)
JUer W) jui woq) .
oh  anndk

Jr Un(Xny)j = Jr nUn,i:

Lemma?2.4.8 below providesthat (uy), satis es assumption (a6) . Applying
Theorem 2.3.5 and Corollary 2.3.6 it followsthat Ff(un) ! F., forh! 0
and that (uy), WZP() is a minimizing sequene of F °(u).

Lemma 2.4.8. Letjr hu;j be asin Example2.4.6 or 2.4.7 and

X z
Fr(u) = feu  ujr pu) Fe(u) = f%u  u;jr uj):

i=1

Moreover let
up := argminF{(u)
u2RNh

and u, 2 WYP() an interpolation asin Examples2.4.6 and 2.4.7.
In particular we have

Jroun(xi)j Jr nuij; = 1000 Ny, (2.64)

see (2.62) and (2.63). Then for every" > 0 there existsh; > 0 suchthat for
everyO< h h;
F°un) Fr(un)+™ (2.65)

The proof of Lemma 2.4.8can be found in the Appendix A.2.
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2.4.2 Two-dimensional NCBV-F unctional

Let us considerthe two-dimensionalcase:

One important property of the interpolation of the data u, usedin the
one-dimensionalcaseis that the functions u, are piecewiselinear. This
approad motivates to also uselinear interpolation in the two-dimensional
case,which requiresa feasibletriangulation of , i.e. a partition of into
triangles. Then in order to compareF (u) and F ,(u), in generalwe have
to sum up over f°(u;; Uy ;jr {ui;j) more than once per node x;; with
jr Kuijj; k= 1;:::;K appraximating the gradiert on triangles adjacert to
Xij . As a consequencewe obtain a functional

c hz X X c i K Y
Fh(u) = K foui; Uy e pUi ): (2.66)
()21 k=1

not being exactly of the form (2.20).

In the following we usea triangulation with quadratic elemeis and bilinear
interpolation of the discrete data t,, but also ending up with a functional
F(u) of the form (2.66).

The triangulation is basedon a regular quadratic two-dimensionalgrid with
meshsizehg > 0, referredto asthe coarsegrid, seeSection2.1.

We considera successi® re nement of the grid with meshsizesh = ;‘—,ﬁ; m 2
No. By T, we denotethe set of grid cells (elemens) with sizeh, by N, the
nodesof the grid and by N,(Q) the adjacent nodesof cellQ 2 T,.

Let
f°R R! R;
to( ;0= g, 19 et p=12 '
2] else

In example2.4.2we have shown that f ¢( ;a) satis es assumptions(a4) and
(ab) aswell asthe strongerinequality (2.53), which is requiredin the proofs
below.
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Ui’jl
2
Q® Q
3
ViRuij VAui;
ui l,j Ui,j Ui+1lj
VAuii | Viui
hUij | VhUij
4 1
Q Q
Uit
Figure 2.4: Denition of r wuf. We have r §u; = 1 Ujo«(xi;) where

QL;:::Q* denotethe cellsadjacert to Xij -

Let Kij £1;2,3;49;(i;j) 2 | » bede ned by

K11 =flg
KNh;l =f29
Kl;Mh :f3g
Knpm, =T4g
Ki1 =f1;4g i=2::5:Np 1
Kim, =f2;3g i=2::5:Nyp 1
K 1; =f1;2g j=2:0My 1
King =f3;4g j =200 My 1,
Kij =11;2;3;49 else
and
1 Uiy Uy
1, = = i+15 i
Ml = ¢ Uja1 Ui for 1
1 us, U
2, = = Ui i
Fhli = ¢ Uy Uy s for 1
1 u U 1
3, = — i5j i1
T TR uy oy
1 us U 14
4. = = ;] i L
' hu”] h ui;j +1 lJi;j

Thusr Ku;; is de ned for k 2 Kj; .

(upper left corner)

(upper right c.)

(lower left c.)

(lower right c.)

(upper boundary) (2.68)
(lower boundary)

(left boundary)

(right boundary)

i < Np: 1 j<|\/|h;

I < Npjl<j Mhp:

fori<i Np;1l j < My;

for1<i Np;l<j My
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Prop osition 2.4.9. Letu 2 W% () , u 2 RN» Mn be givenby u;; =
u (xi);(i5j) 2 1, and
Z
FC(u = F%(uu)=f%u u;jr uj)
h2 X X (2.69)
Fr(u) = Fp(upu) = — fouij Uiy sir Ruigj):
(i )21 n k2K

Moreover for h = 52:m 2 Ng let u, 2 RN» Mn be given by

up := argmin Fn(u;uy);
u2RNh Mn

wheee u,, is given by bilinear interpolation of u on the grid with meshsize
h. Let up 2 WEP() be the bilinear interpolation of u, on grid with mesh
sizeh.

For every" > 0 there existsmg 2 N suchthat for h = Zh—n?; m mg
F°un) Fr(up)+™

holds.

The following lemmasare required for the proof of Proposition 2.4.9:

Lemma 2.4.10. Letf¢ ;a): R R! Ry asdenedin (2.67). Let v 2
RVaMi be xed and vy 2 WEP() be the bilinear interpolation of vy on the

coarse grid.
Moreover let
Vi = (Vh(Xij ) ¢iyarn
Then
JF(vh)  FR(vn)j = O(h): (2.70)

Proof:

Note that

hz2 X X . .
Fh(vh) = 7 fEVh(%) U ()50 (Vh)io(®))):

Q2Th x2N 1 (Q)
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We considera xed grid cellQ 2 Ty.
Sincev is bilinear and f ¢( ;a) andu are cortinuous,there existsy 2 Q sud
that
1 X . . . .
2 FEvn(x) U 0iir (Vi)ie0ai) = FE(vn(y)  u (¥);ir va(W)J):
%2N 1 (Q)

from which follows
iF °(vh) , F(vn)]
X

fEVh(X) U (X)50r va()])  FE(va(y) U (¥)iir va(y)j) dx:
Qa2t, @

Using (2.53) and (2.22) (seeRemark 2.3.1) we have
iF °(vh)  FR(yn)]
X

C Vh(X)  vh(W)j+ ju (x)  u ()i
Q2T @

+ (1+r va O]+ Jr va(W)I) (r va(x) T va(y)i) dx:

Let kr viky = MaXgor, .o, oI (Vh)io(X)i-
Then

jFC(th( Fzﬁ(vh)j C(jr vnky)
IVa(X)  Va(Y)j+ ju (X)  u(Y)j+ir va(x) 1 va(y)jdx :
Qa2t, @

Notethat v,, andr v, areelemert-wise bilinear and thus Lipschitz-continuous
and also u is Lipschitz-continuous. Let C; denote the maximum over all
Lipschitz-constarts of v,;u andr v, over all elemertss Q 2 T,.
Then we have
x Z
JES(vn)  Fi(vn)i CCG h=CGCj jh
Q2T @

Lemma 2.4.11. For every" > 0 there existsh; > 0, suchthat for 0< h
h, and u,, keing a bilinear interpolation of u (x;; ); xij 2 Ny on the grid

JES ) FOGuy)i
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Proof:
Let v2 WEP().

Using (2.53) it follows that
chév; u) Fv;u,)j
P00 U GOIr VOO 1060 0O VOO (.7
2 ju() u,(x)jdx:
Sinceu,, is a bilinear interpolation of u , which is Lipschitz-contin uous, also

u,, is Lipschitz-continuous with the sameLipschitz-constart C.. Moreover
we have u,(Xq) = U (Xq) for any vertex xq of Q 2 Ty. Thus
Z

X
ju(x)  uy(x)j ju(x)  u(XQ)+ juy(x) uy(Xq)j dx
Q2T %
Yz (2.72)
2 CLh = 2] JCL h:
Qzr, Q
Inserting (2.72) in (2.71) gives
JES(v;u)  FE(v;u)j = O(h):
Then for eery0< h  h, andv 2 WHP()
JES(viu)  Fo(viup)j ™
[

In the proof of Proposition 2.4.9we appraximate u by a bilinear interpola-
tion onthe grid. Thereforethe following Lemmaassumes bilinearu = u,,.

Lemma 2.4.12. Letu be bilinear on the grid of meshsizeh.
Let Ff(v) be asin (2.69), vy, 2 RN» Mn and v, 2 WEP() the bilinear in-
terpolation of v, on the grid with meshsizeh.

For a re nement of the grid with meshsizeh = Zlm; m 2 No we have
Fralvi)  FR(vn);

whee v, are the data given by (Va(X))xan , -
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X4
a ]
\_J Xe

X2

Figure 2.5: Re nemen of a grid cell Q into four sub-cells:newnodesx,,, Xe,
Xs, Xw and X, areintroduced.

Proof:

Without loss of generality we considerone re nement step with mesh size
h = h=2 for the ner grid.

Let v, (x) be the bilinear interpolation of v, on the grid with meshsizeh.

For a given elemem Q 2 T,, we de ne

X K2 . .
To = 2100 U0 va(x)i);
x2N (Q)

and analogoustTQ'PQ 2 T,.

We will show Tq To-

Q2Th;:Q Q 'Q
Let without lossof generaliy Q = [0; h]2. By X3 := (0;0); X2 := (h;0); X3 :=
(h;0) and x4 := (h;h) we denote the vertices of elemen Q, by x5 =

(h=2;0);x, = (h=2;h);xy := (0;h=2) and x, := (h;h=2) the mid points
of the edgesof Q and by X, := (h=2; h=2) the midpoint of Q, seeFig. 2.5.

Due to the convexity of f © and the linearity of v,; u alongthe edgesof Q we
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have
h? X
To 00 u (i i)
x2N (Q)
h2, . 1 1 .
+ Zf E(Vh(xl) + Vh(X2) U (xy) U (Xz)),lé(r Vh(X1) + T Vh(X2))]
2
P 0TS 206+ W) U O) U GRS e (xa) * T V(X))
2 X
=TT w0 U (i ()
X2N (Q)

h? : : h? : .
+ o V(X)) Ve + € V() U ()i Va(Xo)]

h2 X . .
16 fe(vn(x) U (X);jr nva(X)j)
x2N (Q)
h2 h2
+ 51O W) U iIr V(x)i + 5 VXa) U ()3 Vn(Xo)
h2 h2
+ 510 Wxe) U (il V(X + 5 Vi) U (r)ir Vi(xw)]
2
+ ch Va(Xm) U (Xm);Jr Va(Xm)]
2 X X X
= (=2 OV U (XF Ve(X)] = T,
Q2Th=2:Q@ Q X2Np=2(Q) Q2Tp=2;Q Q

Thus X X
Fr(vy) = To To = Fﬁzz(v%): (2.73)
QZTh Q2Th:2

O

Proof of Proposition 2.4.9:

Let " > 0. UsingLemmaZ2.4.11we can nd h; > Osud that forO< h h;
and u,, being the bilinear interpolation of u (x;; ); (i;j) 2 1, onthe grid of
meshsizeh "

JFECGiu)  FO(Ciuy)i Q: (2.74)

Let
Up = (Un(Xij ) iz, = (U (Xi )i yat (2.75)
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Let
up := argmin Fg(v;uyp)
v2RNh Mn

and uy the bilinear interpolation of uy on the grid.

Lemma 2.4.10 provides the existenceof m; 2 N, sud that for every h =
4;m  m; we have

Funsuy)  Fr(upug)+ é; (2.76)

whereu, and u_are the data of u, and u, attained at the nodesof the grid
with meshsizeh.

Lemma2.4.12provides that
Foupu,)  Fh(unsuy): 2.77)

Inserting (2.77) in (2.76) gives

Fun;u,)  Fr(upug)+ é: (2.78)

With (2.74)and F {(un;u,) = Fi(up), sinceu,(xij) = u (xi;) for (i;j) 2 1y
(see(2.75), we nally getfrom (2.78) that

F(un;u) Fc(uh;uh)+§ Fr(uy) + ™
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2.5 Implemen tation of the NCBV-Filter

In this Sectionwe descrile the implemertation of the NCBV- Iter, that is
the numerical minimization of

X
Fh(u) = h" FECuy Uy sir nuig §) (2.79)
(i )2l
for givendatau 2 RN M ona xed grid with N M nodes,where

( _
S da i 2>

fe( )= ap. ) (2.80)
217 else:
The continuous functional correspnding to (2.79) is given by
Z
FCuy=  f%u u;jr uj): (2.81)

In the rst part of this Sectionwe considera steepest desceh approad to
minimize F§(u).

In the secondpart of this Section, since we are interested in an e cient
implemenation for ltering images,we considera implicit FE-approad with
better algorithmic performancethan the steepest descen algorithm.

2.5.1 Steepest Descent

In the following we descrile numerical implemertations of the NCBV- lter,
which are basedon minimizing the discretefunctional F{(u) givenby (2.79).

We beginwith the one-dimensional case:

For practical applications, it is feasibleto claim invariance of the functional
and M (ug;:::uy).

To adchiewe this invariancewe usecertral di erences aswell ascombinations

of left- and right-sided di erences and derive three di erent versionsof the
NCBV- lter, which are comparednumerically in Chapter 4.

LetN >1andxi=h(i 1);i=121:::N;h= NLxl be a equidistart grid on
= [0 Lyl
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We recall Example 2.4.6,wherewe usedcertral di erencesfor jr y:j givenby
g‘”'“ Ul = g

ju|+1 U| 1] fori=2::: : N 1’ (282)
JU| uI 1j

jr nuij :=

For the implemertation we make the following modi cations onthe functional
Fr(u): Sincef ¢( ;a) in (2.80)is not di erentiable at ( ;a) = (0; 0) and thus
F:(:) is not di erentiable, we approximate f ¢( ;a) by

C. .  p_
(s T2 A
" else
_ _Jlr B - (2.83)
N I L
= min —Zjaj’ > ] ]»+ max jaj; 21 J

with jxj- = P jxj2+"2;" > 0.

Note that f-( ;a) is corvex with respect to a.

Moreover, it can easily be shovn that assumptions(a5) and (a4) are satis-
ed by f-( ;a).

Moreover we use

=

jui U. jui U g ifi=N: (2.84)
JU|+1 Ui 1jr else
h

Ir auj- =

8| ]U|+1 i.'
E if i =
-

instead of (2.82), i.e. we considerf-(u; u;;jr puij-) instead of f °(u;
Ui s Jr nUij).

In Fig. 2.6 we plotted f-( ;jaj-).

Note that jr nu;j- satis es assumptions(a2)and (a3) if " = O(h).

We de ne

X
F1l(u):= fo(ui  usjr puije): (2.85)

i=1

The following Lemma statesthat F 1(u) ! F(u) uniformly for " ! O:
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Figure 2.6: Left: Plot of f ( ;a) (red graph) and f-( ;jaj-) (blue graph) for
= land" = 1. Right: D|erercef (p]aj) f(;afor =land" =
We have f-(0;j0j-) f(0;0)=" 2" =

Lemma 2.5.1. Let
w . -
Fn(u) = fEu uisir nuij)
i=1

(see Example2.4.6) and F 1(u) be de ned asin (2.85). Then there existsC
independentfrom u suchthat

JFn(u) F1(u) C™

Proof:
From LemmaA.2.2 in Appendix A.2 we have that

f-( ;i)  f°(ja)  C% (2.86)
where C dependsonly on

Thus

X
jFn(u)  F (W) hfSui usir ug)  fo(ui uisjr nuije)
i=1

C(Ly+ h)"=CLo"

(2.87)
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Note that from Example 2.4.6we have that F ,(u) satis es assumption (a6):
For "> 0 there existsh; > 0 suc that for 0O< h  h; u, 2 WXP() canbe
found with

F (un) Fhw)+;: (2.88)
Lemma2.5.1providesthat there exists" > 0 sud that
jF 1(u)  Fn(u)j ; (2.89)

Using (2.88) together with (2.89) it follows that

F(up) F 1(u)+*=

Thus F 1(u) satis es (a6) . Theorem2.3.5then shows that F 1(u) is con-
sistert with (2.81).

In Chapter 4 we show that minimizing F 1(u) resultsin someunsatisfactory
oscillationsin the numerical solutions, which we think is due to the smaoth-
ing e ect of certral di erences.

We consideralternative nite di erence sthemesbasedon right and left-sided
di erences. Let

8 . .
Ui+ uij-
S ._E“TJ fori=1;:::;N 1; (2.90)
't = > Ui Ui qfr if i = N; '
8 h
JUj+ Ujj-
Tlug._EJ lh J =1 (2.91)
J h'J"'__>J'Ui Ui 1 fori=2;:::;N: '
h

Obviously jr Lu;j- and jr Lu;j- satisfy the assumptions (a2) and (a3) ,
if " = O(h).
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We de ne
X 1
F2u):=h f(u u; é(jf aUijs + Jr nUijh)); (2.92)
i=1
h o
F3u):= Ef"(ul Ug;Jr pusj-)
b( 1
+ 5 fu(ui upsir Buij + fo(u o usjr fuie) (2.93)

i=2
+ Ef"(UN Un 5 Jr |hUNj")3

Obviously these functionals also are invariant under transformation M (u);
M (u).

Note that F 2(u) is related to Example 2.4.7. Analogouslyto F 1(u) it can
be shavn that F 2(u) is consistemh with (2.81). F 3(u) is related to a one-
dimensionalversionof the functional for two dimensionsproposedin Section
2.4.2,for which we also have shovn consistencywith (2.81).

The algorithmic performancesof F 1(u);F 2(u) and F 3(u) are comparedin
Chapter 4.

In the two-dimensional caselet = [O;Ly] [O;L,].

The grid points are assumedto lie one a equidistart grid with meshsizeh
and grid nodes

i Dbh :

G 1h ()2 1:

We proposenumerical schemesbeinginvariant underrotation of the grid with
angles 90 and 180 andunder mirroring in vertical or horizortal direction.

Xij =

Foru2 RN M wede ne

8
% Ui+1;; Ui "
ifi=0;
deup = B WL o= 1N 1
E 2h
- Ui;j Ui 1 if i = M;
8 h
E Uij +1 Ui;j o
h ifj =0
— Ui« U 1 ...
dyu; = oh forj =1,:::;M 1,
_E U; U 1 ifj = M;
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and q
JronUije = (dyui)? + (dyu;)2+ "2 (2.94)

We de ne F 1(u) by
X
F 1(u) = h2 f"(ui;j ui;j ,Jr hui;j j,,);
(i;j )2l

wheref-( ;a) is de ned asin (2.83).
For de ning F 2(u) in the two-dimensionalcaselet K;;  f1,2;3;4g;(i;]) 2
| bedened asin (2.68)

and let
T R P LT
b h Uijj +1 Ui;j

) ) 1 Uis1i U . )

2 - i+1; i5j . .
r cup j» = — forl i< N:;1< M:
Bl = w1y J
) ) 1 U 19 U . )

3 _ i L i3] . .
r >uUp j» = — forl<i N:;1< M:
Bl = w1y J
) ) 1 U 19 U . .

4 - i L (¥} . .
r YU jo = — forl<i N:1 < M:
J h ') J h ui;j + Ui;j . J

where (a;b)" = Pavme
Wede ne F 2(u) and F 3(u) by

X X 1 X
h fo(uii U

o ( ] B #Ki;j k2K
h2 X X

F2(u) : jr Ui j):

F 3(u) :

foluy Uy ﬁUi;j )

(5 )21 k2K
Note F 3(u) is related to the functional proposedin Section2.4.2,for which
we have shavn consistencywith (2.81). Showing jF 3(u) Fn(u)] C"

analogouslyto the proof of Lemma2.5.1,it followsthat F 3(u) is consisten
with F (u).

For the following let F ,,(u) be oneof the functionalsF 1(u), F 2(u) or F 3(u)

and
@F n(u) :
@i (i )2

r Fn(u) =
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The steepest descent algorithm for minimizing F(u) is given by:

Algorithm A

1. Select starting vector u© and step size t> 0.
2.for s=0:::steps 1
ust) = y©) tr Fp(u®).

The starting point is arbitrary. It is feasibleto setu®:= u .

The step size t hasto be chosensmall enoughto provide a decreasingof
F h(u®) during the iteration, which can be chedked automatically by testing
c:i= Fr(ut™) Fuu®). While c> 0, tisreplacedby 5t and u®*? is
re-calculated.

For decreasingthe computational e ort, it is feasibleto usecertain criteria
to stop the steepest desceh at a point, when the iterated reasonablywell
appraximates the minimizer. We proposethree di erent stopping criteria:

Criterion a) Using a step size cortrol of F,(u®)  F,(u® Y) for s =
1:::steps 1, the stepsize t is decreasedo assertthis inequality.
We stop the iteration if t< ty.

Criterion b) Sincethe gradiert of F ,(u) vanishesfor a minimizer, the iter-
ation at steps might be stoppedif the norm of the gradiert jr F,(u‘®)j
is small enough,that isjr Fp(u®)j< Fy.

Criterion ¢) The iteration might be stopped if the update kus*V  u®k
in the current steps is small enough,ku®™ Uk < uy,.

Incorporating stopping criteria a) -c) we derive the following procedure:

Algorithm B

1. Set steps>0, ty; Fi and Uy
2. Select starting vector u®© and initial  step size ty> 0.

Set t= to
3.for s=0:::steps 1
Foa= Fn(u®).
do f

ustt = ys tr Fr(u®)
Fnew = Fh(u(s+l))
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if (FneW > F0|d): t t=2
if t< tyg: stop.
g while FneW > F0|d,
if jr Fa(u®™M)j< Fy or ku®h  u®k< uy: stop

Herely a b denotesthe assignmen of the value b to variable a.

2.5.2 A Finite Element Approac h

The steepest desceh method provides good appraximations of the minimiz-

ersof Fy(u). The drawbad of the steepest descenh is its slow convergence.
In this sectionwe provide an alternative algorithm giving atrade-o between
the quality of the results and computational e ciency.

In this sectionwe consideronly the two dimensionalcase.

The FE ansatzis basedon the cortinuous NCBV-functional, ewvaluated on
piecewisebilinear functions.

Let T,, be the setof the (closed)quadratic elemens Q of a regular triangula-
tion of basedon a grid with meshsizeh. The setof grid nodesis denoted
by Ni = fxi;j(i;j) 2 1g.

By Nnh(Q);Q 2 T, we denote the set of nodes of elemen Q. Let Vi()
be the spaceof cortinuous and elemert-wise bilinear functions. A function
v2 V() isidertied with avectorv2 RN M,

Additionally we de ne a set of basisfunctions on the spaceof elemert-wise
linear splineson by

' ] 2 Vh()(;

, 1 ifi=kandj = I;
i (Xir) = 0 else
for (i;j) 2 I, and denote

Bh:=1" ()2 10

For givenu letu 2 V,() besud that u (x;;) = u,; . We considerthe

function F-(u);" > 0 given by

i
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FW):V()  Va() ! R
Fo(uy= f«(u(x) u(x);jr u(x)j-) dx (2.95)

wheref.( ;a) is de ned asin (2.83).
Sincefor a minimizer u 2 V() of F-(u) the directional derivatives satisfy

d
gFu+t)=0 8" 2By

it follows with (2.83) that

z 1 P '
i uGor jue) u g ) e
ju) u i ruer () oo
+ max 2 U0 ;0 it UuCOj dx=0 (2.96)
forall' 2 By. P
Let uyj =gi(xij) (i) 2 1 andu = (Ui )jHa - With U= )5 U "
andu = ;) Uy ' ij andusingthe abbreviations

|
Po

a(u)(x) = min TSRO (2.97)
_ jux) uXj# 1
b(u)(x) = max 2 U2 0 oo (2.98)
it follows by setting' =" «;;(k;1) 2 1 in (2.96) that for every (k;1) 2 | .
Z
Ui a(u)(x)" i (X)" k() + Bu))r "5 ()r i (x) dx
(i )2>I( ~ (2.99)
= u; au)(x)’ i (X)" ka(x) dx:

(i )2l
We approximate a(u) and b(u) by element-wise constart functions aq(u) and
(u); Q2 Ty, wherejr u(x)j- is evaluated in the midpoint of ead cell Q.
With this approximation and by de ning
Z Z

(MQ)ij i = Q' ij (X)" ki (x) dx and (Lq)jjw = Qf Y OOr "k (x) dx
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for Q 2 Ty, (2.99) readsas
| |
X ' X '
8o(U)Mg + Io(U)Lg U = aq(u)Mg U : (2.100)
Q2Th Q2Th

This systemis linearizedin the following way: Let & 2 RN M be an approxi-
mation of the solution of (2.100). Approximating &g (u) and i (u) by &g (tt)
and (&), respectively, we derive the linear equation

! !

X
8o(t)Mq + By(t)Lg U = O (2.101)
Q2T Q2Th

To solwe (2.100) we then apply a xed point iteration asfollows:

Algorithm C

1. Set u@ :=y

2. For s=0:::steps 1L
Solve (2.101) with t:= u®,
The solution is denoted by u(*D)
if kuGD  u®k< ug: stop.

For solving (2.101) the Conjugate-Gradien (cg)-method is used.

Numerical experimerts have showvn that the solutionsu(®; s= 0:::steps 1
show oscillations. We think that theseoscillations are causedby the degen-
eration of the PDE (2.101) in the caseof ju(x) u (x)]j being large.

In order to wealen sud oscillations, instead of (2.101) the equation
I

X
1+ tag(t) Mo+ tht)lg u=
Q2Ty I I
X ' X '
MQ o+ t a(uo)MQ u, (2102)
Q2Ty Q2Th

is usedfor giventt 2 RN M and t> 0:
As for the steepest descelhy we introduce a step sizecortrol for t:
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Algorithm D

We use

1.
2.
3.

Set s= 0 and u® :=u

Set Fgq = Fh(U(s)).

Solve (2.102) with &= u®,
The solution is denoted by u .

If I:new I:old:
ut™ :=u, s s+1
I:old I:new
else:
t =2
if s steps or t tor:  Stop.

Jif u*) = u® stop, else go to step 3.

X

Fn(u) = h? [ CER P N CENDE

@i)2l

79

Sincewe usethe cg-methal for solving (2.102), which is an iterative method,
algorithms C and D consistof two nestediterations. We referto the iteration
s s+ 1lasthe outer iteration, and to the iteration of the cg-metha asthe
inner iteration.

Besidea maximal number of iterations for the cg-methal we provide a thresh-
old on the residual of (2.102). The inner iteration is stopped if the residual
falls below this threshold. In the next step of the outer loop the residual
for u® is cheded at the beginning of the inner iteration and sinceit is still
below the given threshold, no inner iteration stepsare performed. We then

have us*) = y@®:j

0 and the outer iteration can be terminated.
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Chapter 3

Examples of Denoising
Pro cedures

In this sectionwe presern two examplesof astronomicalapplications, where
denoisingplays an essetial role.

3.1 Detection of Arcs and Arclets

An obsenable e ect of concetrated massin the universeis gravitational
lensing:

Light passingby a massiwe object, for examplea galaxy, is bendedby the
gravitational force acting on the photons. Similar to an optical lens, the
gravitational lensinga ects the light from objects far behind the mass. The
imagesof theseobjects are deformedby the bending of the light and appear
as arcs and arclets Often multiple arcs of one and the samebadground
object can be obsened. In the caseof an ideal symmetrically shaped lens
with a sourcedirectly behindthe lensin the obsener's point of view, socalled
Einstein rings, i.e. completerings around the gravitational lens,appear.
Consideringthe gravitational lensingof galaxies,thesefar objects typically
are other galaxies,referredto asbackgound galaxies The rst gravitation-
ally lensedgalaxieswere detectedonly in 1986(see[39, 51]).

The e ect of gravitational lensingcan alsobe obsened in a wealker form for
stars and planets.

Galaxiesare known not to be homogeneouslhspreadin the universe,but to
arrangein laments. At intersectionsof these laments so called clusters of
galaxiescanbefound, i.e. groupsof galaxiesbuilding a dynamically bounded
systemwith a high mass. Estimatesof the total massof galaxy clusters have
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shav that only 5% of the massis cortributed by the matter of stars and
planets. The remaining part of the massis given by gas( 15%) and the so
called dark matter ( 80%).

observer

arc

Figure 3.1: By gravitational lensinglight from a badkground galaxy passing
the cluster of galaxiesis bended. Arc-shaped imagesof the badkground
galaxy around the cluster becomevisible for the obsener.

For clusters of galaxiesoften a strong e ect of gravitational lensingcan be
obsened.

Fig. 3.1illustrates the e ect of gravitational lensingfor a cluster of galaxies.
Fig. 3.2 shows an image of the galaxy cluster RXJ1347-1145 where gravi-
tational lensingis obsened. Four arcs which can be visually detected are
marked with boxesby hand.

The e ect of gravitational lensingof galaxy clustersis usedas an universal
tool in astrophysical researd:

The light sourcesa ected by the gravitational lensingin generalare
to far away (showing up to a redshift z 5, see[23]) to be studied
even with large telescoges. Gravitational lensingprovidesinformation
on distant galaxiesand thus canbe usedfor studiesof galaxy ewlution
(see[48 43]) and galaxy populations [22].

Gravitational lensingis oneof the few astrophysical processesin which
dark matter is involved in an obsenable manner. Studying the lensing
properties of galaxy cluster allows to estimate the clusterstotal mass
[21, 52, 40]. Togetherwith information about the gasand star matter
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Figure 3.2: Detail of a VLT obsenation of the galaxy cluster RXJ1347-1145
(from [11]) The imagehasa sizeof 2285 2388pixels.

the fraction of dark matter is deduced. Moreover the spacial distri-

bution of masscan be estimated. It is assumedthat galaxy clusters

represen the typical massfraction (baryonic / non-baryonic matter)

of the universe,thus cosmologicaparameterssud asthe massdensity
v and total massand energydensity ; canbe estimated.

The statistics of arcs, determined in systematic seardes (surveys,
where large areasof the sky are investigated, helpsto distinguish be-
tweenthe cosmologicaimodels discussedn literature [2, 33].

In image data, arcs shaov up asvery thin and faint structures. Under non-
ideal obsenation conditionsthey are easily dispersedand disappear into the
badkground. Even with ideal conditions their intensity often lies just above
the badkground level. The detection of arcsis complicated by the fact, that
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Figure 3.3: Detailed view of the imageof cluster RXJ1347-1145hawving two
bright and two or three faint arcs.

astronomicaldata cortain noise(e.g. Poissonnoisedueto photon court and
read out noiseof the CCD-sensors)sothat the distinction betweenfaint arcs
and badkground noiseis di cult ewen for the human eye (seeFig. 3.3).

Often large data setsare to be searted, which can be done by human eye
only in a time consumingmanner. Thus a tool for automatic detection of
arcsis needed.

In [37] we proposedan algorithm to automatically detect arcs and arclets.
Sincethe detection procedureis basedonly on geometricalaspects, this algo-
rithm may alsobe usedto detectany thin and elongatedsourcesn arbitrary
image data.

3.1.1 The Algorithm

The proposedalgorithm consistsin four steps:
1. Histogram modi cation (scaling)
2. anisotropic di usion (smoothing)
3. Object nding (detection)
4. Selectionof arcs(classi cation)

Details on the algorithm can be found in [37].
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For the following, we concertrate on the step of anisotropic di usion:

To detectarcs,it turned out to be necessaryo remove noisecortained in the

astronomicaldata to reducefalsedetections,i.e. falseclassi cation of noise
structures as objects. Thus the denoisingstep hasa strong in uence on the

quality of detections. In order not to dispersefaint objects by the smoothing

process,we decidedto use anisotropic di usion, which mainly smooths in

parallel direction to edgescortained in the image and thus presenes edges.
Details on anisotropic di usion can be found in [54].

Let us descrile the anisotropic di usion model in the cortext of Bayesian
statistics, following [13]:
We consideragain the model of additive Gaussiannoise,see(1.7):

Letu = (u;;)Gj)2 besomedataonagrid of N M nodes..
The data are assumedo be corrupted by Gaussiannoise,i.e.
— ,,0 L (i .
Uy = U + 55 (5]) 215

whereu® 2 RN M are noise-freedata and ;; (i;j) 2 | isii.d. Gaussian
noisewith zeromean.

Moreover, let v 2 CY() be somearbitrary function and A, : ! Sym,,
where Sym, is the spaceof symmetric2 2 matrices.

Moreover, we assumethat A,(x) hasthe eigervalues (1;g(jr v(x)j), where
g(s) : Rg ! (0;1]is a monotonouslydecreasingfunction with g(0) = 1 and
limgy g(s) = 0. We denotethe correspnding normalized eigervectors by

1(X); 2(x).

We de ne the following image prior:

0 1

1

2.
prior (|,J )2'

p(u) = cexp@ JAV(Xi; ) T onui PR

whereu 2 RN M andr qui;; (i) 2 | is de ned by

(Ui+1;  Uij;Uij+1  Uj YT ifi < N;j < M;

r ol = =
h=i h 0 else.

p(u) senestwo purposes:
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1. In homogeneousegionsof v, i.e. wherer v = 0, we have A,(x) = Id
and thus the prior is similar to the prior de ned in (1.44). In particular
we assumea Gaussiandistribution of jr u;; j in theseregions.

2. In regions,wherer v >> 1 andthe secondeigervalue of A, (x) becomes
small, the prior is mainly basedon the assumptionthat hr yu;; ; 1(Xi;j )i
is Gaussiandistributed. In particular, we assumethat on average
r hu; is parallel to (X ).

Thus by providing function v u®, where u® is an interpolation of the are
the noise-freedata knowledge about homogeneousegionsas well as about
edgesand their direction in the imageu® are usedin prior p(u), referredto
as structural prior [13).

Let us supply a concreteform of A, (x):

To nd an appraximation of u®, we consideru (x) being an interpolation of
u on andsetv(x) = (u (x)) ,where(:) ; > 0, denotesthe corvolution
with the Gaussiankernel K (x) := %exp( 2—2).

Let the structure tensorJ (x) be de ned by

(dyv)?  dxv dyv

)= g vdy (dv)?

in the caseof = 0and

J (x) = (Jo) (x)
for > 0,where(:) denotesthe componert-wise convolution with kernelK .
Let ,(x); ,(x) bethe normalizedeigervectorsofJ , with the correspnding
eigervaluesorderedwith increasingabsolutevalue. We set

3 1 0 (x)
Av(x) = (X)) 2(x) 0 pm ;(x)

with L
g(s) = rraciie 0:

Since we assumeadditive Gaussiannoise in the data u , the conditional
probability p(u ju) is given asin (1.10). Togetherwith the above prior we
derive the following MAP estimator:
argmin  log p(u ju)p(u)
U2RN M X
= argmin (U uy)®+ AV )N nUg j?
u2RN M (i )21

(3.1)
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with regularization parameter > 0. The optimality condition for the min-
imizer uY of (3.1) then is that

X
(U uy) i DA )T Ul AV )k i =0 (3.2)
(i )2!

holdsfor every 2 RN M,

With
Y @y ozoagizy oz )t ifi> 1> 1
(rn) 25 = ¢ 0 else
using that
X _ X )
PAL (X )1 nUj s Av(Xig )r n i = (rn)  (Av(Xig )r nldy
(i )21 (i )21
it follows from (3.2) with
1 ifi=k;j=1 -
i = X j)21;
that for (k;1) 2 I,
Wy Uy (rn) AuXe)?r nuy, =0 (3.3)
We interpret (3.3) as an explicit step with stepsize t =  of a discrete
schemefor an anisotropic di usion process
@

@ rr Dwru=20

with di usion tensorD,(x) = (Ay(x))? (see[54]).

3.1.2 Results

To test the performanceof the proposeddetection algorithm we use three
di erent test images. The rst data set, already introducedin Fig. 3.2 con-
sistsof 2285 2388pixels with intensitiesranging from 8:49 up to 70049.
To visualize the data, we already applied histogram modi cation, see[37].
The histogram of unscaledintensitiesis givenin Fig. 3.4.
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Figure 3.4: Histogram of the rst test image with intensities in the range
[ 849 70049]. The gray bar indicatesthe intensity rangewherearcscanbe
found.

The secondand the third test image, obsenations from the Hubble Space
Telescop of the A1689cluster shovn in Fig. 3.5, are of size2048 2048with

intensity ranges[0; 195598] and [0; 931426], respectively. The histogramsof
the secondand third test image are omitted.

We demonstratethe advantages of anisotropic di usion lItering. Fig. 3.6,
right, shows the result of ltering the rst test imagewith parameters =

2, =9 =10%and = 15. For the readersconveniencewe also plotted

the un ltered (only histogram modi ed) data (Fig. 3.6, left).

To investigate the enhancinge ect on weak structures we zoom into a part
of the image shavn in Fig. 3.7, top.

For comparisonwe also applied Gaussiancorvolution (kernelK (x), = 7),
seeFig. 3.7 (middle). Fig. 3.7, bottom, shaws the correspnding part of the
image Itered with anisotropic di usion.

It is obsened that both Itering techniques are able to remove the noise
contained in the original data, but only anisotropic di usion provides the
presenation of edges.This concernsboth strong and weak structuresin the
image. Using Gaussiancorvolution leadsto a dispersion of the objects in-
stead, which would a ect the afterwards detection procedure.

The arc detection algorithm is applied to the three test images(see[37] for
the choice of parameters.)

During classi cation, only objects with an eccetricity larger than a given
threshold cec > O are retained.

For the rst test imagearcs are selectedwith eccetricity above Ceec = 0:7.
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Figure 3.5: The secondand third test image shaving a detail of a Hubble
SpaceTelescop(HST)-obsenation of the galaxy cluster A1689. Both images
have size2048 2048.

Fig. 3.8 shavs the detectedobjects. The most elongatedobjects are listed in
Table 3.1. Additionally the masscerter, size(in pixels) and eccetfricity is
given. The objects are indexed with decreasingorder of eccettricity. These
indicesare inserted by hand in Fig. 3.8to mark the correspnding objects.

It canbe obsenedthat the automatic detection processhesideshe four arcs
obviously recognizableafter histogram modi cation nds a large number of
arc candidates,with many of them di cult to detect by human eye.

Note that arc candidate no. 3 is detected although being a relatively faint
structure. For candidateno. 4 the algorithm wasableto separatethe arcfrom
a nearly foregroundobject. Objects no. 1,2 and 5 seemto approaximately
lie on circle, on which other faint structures are detected,for exampleleft to
object 13.

For a de nite decision,if detectedarc candidatesare results of gravitational
lensing, additional information on the redshift is necessary

Fig. 3.9 shaws the results of applying the algorithm to the secondand third

test image. Again we obsene a large number of detectedarcs not obviously
detectedby human eye. Additionally, giant arcsare cortained in the image
data. These consistof multiple local maxima with gapsin between. Due
to the segmetation strategy se\eral adjacen parts are detectedseparately
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Figure 3.6: Left: Histogram modi ed image of the cluster RXJ1347-1145.
Right: Image with anisotropic di usion lItering applied. Comparedto the
unsmathed imagethe noiseis considerablyreduced. Parameter setting for
the Itering: =15, = 00001, =2and = 9;

They are mergetogether in a post processingstep.

3.1.3 Comparison with other Software

In [37] we comparedthe proposedalgorithm to a software padkage named
SExtractor (\source-extractor"), written by E. Bertin (see[9, 10]). This
padkage provides an astrophysical general purpose tool for extraction of
sourcessudh as stars and galaxiesand is widely usedin astrophysics. In
cortrast our software is particularly designedfor the detection of thin and
elongatedobject, e.g. arcs, especially in view of faint structures.

Although both tools are designedfor di erent areasof application, similar
componerts in the implemertation canbeidenti ed: SExtractor usesbad-
ground estimation to distinguish between objects an badkground, where we
use histogram modi cation. Instead of anisotropic di usion usedin our al-
gorithm, SExtractor usesGaussianconvolution for denoisingthe data. The
processof detection, descriked in the SExtractor manual (see[9]) refersto
the object nding proceduredescriked above. Finally a deblendingis used
to separateclose-ly objects, where a merging processis applied in our al-
gorithm. SExtractor doesnot perform a selectionof objects with speci ed
properties, sud as shape attributes, but a post-processingcould be easily
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Figure 3.7: Zoom of Fig. 3.2Top: histogrammodi ed data, middle: Gaussian
ltered image(kernelK with = 7), bottom: image ltered with anisotropic
di usion with the parameters: = 15 = 0:000], = 2and = 9. In the
Gaussian ltered image (middle) the edgesare not presened well, i.e. the
arcs get dispersed,while anisotropic di usion (bottom) maintains the edges
and reducesthe noiseat the sametime.

added since geometrical information about the objects is provided to the
user.

The results presened in [37] indicate the following di erences betweenthe
two algorithms:

SExtractor usesalower segmetation threshold, sothat larger areasof
the objects are detected. In somecasesan undesiredmerging of close-
by objects can be obsened, wherethe afterward deblendingprocedure
fails to separatethe objects.

The result of our algorithm providesa moreregular shape of the objects,
which is due to the useof anisotropic di usion.

In [29] our algorithm is comparedto another recerly deweloped algorithm
for detecting arcs. In a study on simulated gravitational lensingthe fraction
of arcsdetectedunder the in uence of restrictive obsenational e ects to the
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Figure 3.8: Result of applying the detectionalgorithm to the rst testimage.
Only objects with ecceiricity above c..c = 0:7 were selected.Objects listed
in Table 3.1. are marked with the accordingindices.

number of arcsdetectedwithout obsenational e ects is determinedfor both
algorithms. The overall result is that our algorithm detectsa larger fraction
of arcsthan the other software, but the latter dueto a lower thresholding for
segmeimation is able to recover larger parts of the arcs, especially for \giant
arcs".
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Masscerter | Size(Pixel) | Eccertricity
1 |(593,749) | 768 0.978
2 |(188,177) | 603 0.956
3 |(595,899) | 143 0.943
4 | (794,440) | 241 0.942
5 |(320,144) | 196 0.928
6 |(842,901) | 181 0.901
7 | (141,328) |27 0.876
8 |(130,819) |95 0.871
9 | (165,61) 52 0.866
10| (223,871) | 86 0.864
11| (488,103) | 65 0.854
12| (151,659) | 32 0.845
13| (677,260) | 44 0.840

Table 3.1: Listing of the most elongatedobjects detectedin test image one,
providing position, object size (number of pixels) and eccetricity of eath
object.

Figure 3.9: Left: Result of applying the detection algorithm to the second
test image. Left: Result of applying the detectionalgorithm to the third test
image.
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3.2 Robust Reconstruction from Chopp ed and
No dded Data

Ground basedastronony obsenationsin infrared (IR) wavelengtharese\erely
a ected by atmosphericand telescopicthermal noise. The common ap-
proad for noisereduction in IR obsenations is to usechoppingand nodding
(see[18, 44]).

The idea is to provide referencesignalsfrom di erent positionsin the sky.
Sincethe noiseis rather varying in time than in space,it canbe reducedby
taking the di erence betweenthe signal from the obsened sourceand the
referencesignals.

Positions A B A B A C

Optical
Axis

Secondary | !
Mirror

Mirror ]

Original Position Chopping Chopping & Noddinc

Figure 3.10: The procedureof choppingand nodding Left: original position

of the telescope, pointing at a position A. Middle: tilting the secondary
mirror provides a secondarysignal from position B by changing the optical

axis: Right: After moving the telescop points at a third position C, asecond
chopping provides another signal from position A.

By the processof choppingthe secondarymirror of the telescop is tilted by
a certain angleto derive a referencesignal. Let A denotethe position, where
the telescop is pointing beforechopping, with signal S; recordedfrom that
position. By B = A H we denotethe position after chopping, and by S,
the correspnding signal. H is called choppingthrow or choppingamplitude

By chopping, atmosphericnoisein the recordeddata, referredto as back-
ground noise in the following, is reduced. Chopping does not satisfactorily
reducethe thermal noiseproducedby the telescop itself, referredto asdark
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noise, for the following reason: Tilting the secondarymirror has an e ect
on the optical path lengths of the light, i.e. the length of the path which
light travelsinsidethe telesco. Sincethe optical path lengthsdi er for two
signalsS; and S,, the thermal emissionof the telesco acts di erently on
both signals.

To reducedark noise,a secondreferencesignalwith the sameoptical path as
the original signalis required. This signal is obtained by moving the whole
telescope, referred to as nodding. Herely for the standard approad, the
position the telesco is pointing at after moving, denoted by C, matches
C = A+ H (referredto as parallel choppingand nodding in literature). De-
tails on the reduction of atmosphericand telescopicnoise by chopping and
nodding can be found in [25], sections\Observing Strategies"and \Analyti-
cal Expressions”,and in [46], section4.4.

We denote the signal from referenceposition C by S;. After the nodding
procedurea secondchopping is performed. By the special choice of C the
telescope then points againat position A, from which another signaldenoted
by S; is recorded. On the whole, two signalsfrom the object and two refer-
encesignalsare available.

Fig. 3.10illustrates the telescope positions.

Modi cations of the proceduredescrilked above, for example orthogonal di-
rections for chopping and nodding, also are discussedn literature, see[38].

Note that chopping and nodding is performedin a rapid sequence.

When observingpoint-lik e structures, the chopping amplitude often can be
chosenin a way that the referencepositions cover empty sky outside the re-
gion of interest. A reconstruction processthen is not required. Howeer, in
practice, when objects under investigation are extended,for exampleplane-
tary nebulae,or have other objects close-ly, the referencepositionsin general
match non-empty regionsand a reconstruction step becomesmandatory.

The reconstructionfrom chopped and nodded data was rst discussedn [4],
wherea Fourier-basedmethod was proposed. In the papersof Bertero et al.
[6, 7, 5, 8] iterativ e reconstruction methods are discussed.Recenly, Chan et
al. have proposeda reconstruction method basedon wavelet decompsition
[15].

Experimerts have shovn that noisestill inherert in the data after chopping
and nodding, seerely a ects the reconstruction process,see[3(. It was
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pointed out that robust reconstruction methods are needed.

In [36] we proposedtwo di erent methods providing sud robustness.
Beforegoinginto detail, let us give a cortinuous description of the problem,
following Bertero et. al. [5, 8]. The main di erence is that Bertero assumes
vertical choppingdirectionsafter appropriate rotation of the data. We extend
the conceptto generalamplitudesh 2 R?nf0g. In particular this easeshe
numerical treatment of multiple chopped data setswith chopping amplitudes
being not parallel to eat other.

Let denotea section of the sky under obsenation. With an appropriate
projection to R%, weassume = [O;Ly] [O;L,].

For eat point x 2 , the data recordedat x are

fX)=S1+& S S

and the the brightnessintensity distribution u: ! R to be reconstructed
from the data ful lls

2u(x) u(x H) u(x+H)="f(x); X2 ; (3.4)

We assumeu to be not-negative, referredto asconstrairt of non-negativity.
Note that (3.4) involvesfunction valuesof u(x) in the domain

h= [fxjx+H2 orx H2 g
We de ne the operator

Iy (L2 ) ! L3()
u! ITg(u)(x):=2u(x) u(x+H) ulx H)

where X = L?( y) andY := L?() are the spacesof squareintegrable
functionson  and , respectively. With this notation (3.4) now can be
rewritten asoperator equation

Iy (u) =f: (3.5)

Note that foru 2 L2( y);f 2 L?() in generalwe do not have point evalua-
tion, i.e. u(x) andf (%) areuniquely de ned up to null sets. For the chopped
and nodded data we have that they are achieved by courting photons hitting
the small detector areasof the CCD-sensor. Therefore we assumethat we
have point evaluation u(*) andf (%) for x ona xed grid in , correspnding
to the positions of the CCD-elemetts.
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The problem is discretizedin the following way:

LetH = (Hy; Hy). Without lossof generality we assumehat H, O;H, O
in the following.

Let (xi;y;) 2 ;(i;j) 2 | be the sampling points (pixel positions of the
CCD-sensor),de ning a rectangular grid on . Without loss of generality
we assumethe cell length to be 1.

Let
u = (Ui = WX ¥i)) i)z
fo= (fij)aHa
With u weassaiate an bilinear interpolatedfunction u: Let (X;y) 2 [Xi; Xj+1)
[Vi:¥i+1), then X
u(x;y) = Ws;t Ui+sj+t
s;it=0;1
where
Poo(X X3y ) = (1 x xi) @ y vy
Pro(X Xy y) = (X x) (L (Y ¥); (3.6)
Poa(X X3y y) = (1 X x) (Y VY);
PaaX Xy ) = (X x) (Y y):

If wetakeu Oon n the resulting discretizedsystemof (3.5) is
Aju=T; (3.7)

whereAy isanNM  NM tensorwith coe cien ts

Fao(ry;ry) ?f J:k ” = Ix+ 1;j.|. ” = ly;
Loa(rx;ry) ifjk ij=ijl jj=iy+ 1
Lia(rary) dfjk dj= i+ Ljl jj=iy+ L

§ 2 ifi=kj=|
Poo(rxsry) ifjk0j =ikl jj=iy;

Herei, and iy, denotethe integer parts of H, and Hy, respectively, i.e. iy =
bHycandry := Hy, iy, analogouslyfor iy;ry.

Interpreting u and f as vectors (by re-numbering the grid points x;; ) and
Ay as matrix, we seethat Ay is symmetric and positive de nite and thus
(3.7) hasa unique solution.
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Assuming Gaussiannoisewith variance 2 in the data f, we have
|

P N
@iy An(Ug)  figje
22 '

p(fju) cexp

Thus minimizing (3.7) is a maximum likelihood estimation [42).

Three di erent types of reconstruction methods are discussedn literature.

Theseare Fourier-basedmethods (see[4]), iterative methods (see[5, 8]) and
a wavelet-basedapproad proposedby Chan et al. [15]. A detailed overview
over thesemethods can be found in [36].

Let usbriey descrike two iterative methods proposedby Bertero et al. (see
[5, 8]):

The rst, herereferredto asmethod (A), isthe constrain Landweber method
reading as

U(O) =0
fors= 1:::steps:
u(s) = P+ U(S 1)+ AL f AHu(S 1)

whereP. is the projection operator onto the setof vectorswith non-negatiwe
eriries (ead negative ertry is setto zero),and is an adequatelychosen
positive relaxation parameter.

The secondmethod is the projected Lavrentiev iteration, herereferredto as
method (B), de ned by

U(O) =0
fors= 1:::steps:
u(s) = P, u(s 14 f AHu(S 1)

Both iterative methodswork reasonablye cien tly if the choppedand nodded
data are only distorted by a small amourt of noise. In this case,the results
are qualitatively comparableto those obtained with the Fourier methods.
Howe\er, the iterative aswell asthe Fourier methods su er from robustness
problemswith respect to high noisedistortions.

3.2.1 Robust Reconstruction

Numerical simulations (seeSect. 3.2.2) show that for data se\erely a ected
by noise arti cial structures arise during the reconstruction processfor any
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of the methods mertioned above.

To overcomethis problem, we proposeto combine iterative reconstruction
methods with a median lItering technique (see[42]), applied after ead it-
eration. Median ltering is the method of choice sinceit properly removes
arti cial structuresand canbeimplemerted in an e cien t way (see[49, 50]).

vk for n odd, wherek satises2k+ 1= n and %(vk + Vk+1) for n even, where
k satises 2k + 2 = n, respectively. In median Itering ead value u;,;, is
replacedby the medianvalue of the setof valuesin a neighborhood of (io; o),
given by

fugt ol - mandii ol - Mg

for somem > 0,e.g.m = 1;2;3.
We proposethe following variant of method (A) de ned by

U(O) =0

for s= 1:::steps :
1. u® =P, ut D+ AL f AyuG D
2. Apply the median filter to u(®.

The variant of method (B) is de ned accordingly

This strategy is related to that used for the wavelet approad (see[15]),
where wavelet thresholding is applied for denoising after ead step of the
Landweber method.

Note that the matrix Ay is symmetric and positive de nite. Therefore for
solving (3.7) the Conjugate Gradiert (cg) method can be used. It hasthe
advantage of being faster corvergen than the Landweber and Lavrentiev
method. Howeer, dueto faster corvergencethe reconstructionmethod then
is lessstableto noise. To increasestability we proposesubsequetty applying
one step of the cg-methd followed by median Itering.

The correspnding method, referred to as the cg-lasel method, reads as
follows:
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U(O) =0
for s= 1:::steps :
1. Apply one step of the cg-method with
initial ~ vector uG Y
2. Denoting the result by &),
we replace & by P, u(® to meet the
constraint of non-negativity.
3. Weapply the median filter to &
to achieve iterate u®.

The constraint of non-negativity is necessaryto avoid artifacts in the recon-
struction.

In [4] and [7] it has been proposedto use multiple chopping data sets for
enhancingthe quality of reconstruction. The results of independer recon-
struction from dierent data sets are combined in a post-processingstep
using the pointwise meanor median.

Bertero [7] usesthis strategy mainly to avoid the appearanceof ghosts of
bright objects and arti cial areaswith zerointensity.

Wetake advantage of multiple data setsfor arobust reconstruction. Di erent
from [4, 7] we combine the resultsto the reconstructionsafter ead iteration.
Let H¥;k = 1:::K denote a set of chopping amplitudes and denote by f*
the correspnding sampleddata sets.

A reconstructionu is a solution of the system

Agu=f*  k=1::K : (3.8)

We solwe this systemwith a blocked Landweber-Kacmarzmethod (more de-
tails on sudh methods can be found in [32]):

Set u®@ =0
for s= 1:::steps :

two cg iterations  starting from (u® V) :
The solution is denoted by u'®.

2. Calculate the median u® from
of ul®;:::;ul for noise removal.
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Note that the medianis calculated separatelyin ead samplingpoint for the
stack of images: That is, in step 2 of the above algorithm we set

(u®); = medianf(ul)i(;js);:::;(uff))i;j g

foreat i; .

3.2.2 Numerical Tests

To simulate realistic test data we require detailed knowledgeabout the un-
derlying noise process. We have to take into accourt that two kinds of
noisesourcesare preseit: rstly , thermal emissiondrom the sky (backgiound
noise) and the telescop (dark noise), which both is reducedby the chopping
and nodding procedure,and secondlynoiseinducedby the recordingprocess,
i.e. Poissonnoisedueto photon courting (ead photon hitting a capacitor of
the CCD-sensor is courted with a certain probability) and Gaussianread-
out noise.

We assumethat the noise a ects the four signals S;; S;; S; and S; inde-
penderly. Let E(u(x;y)) denotethe correspnding random variable. The
recordeddata then are

X y) =2u(xy) + (u(xy)) + (u(x;y))
u(x + Hy;y + Hy) (u(x+ Hyx;y + Hy)) (3.9)

ux Hyy Hy)  (U(x Hgy Hy))

where (u(x;y)) arerealizationsof E(u(x; y)). Wewrite f(x;y) := f(X;y) +
~(x;y) and f3; := fi; + ~;, respectively, where

~xy) = (U(xy) + (u(x;y))
(U(x+ hyy+ Hy))  (u(x Hyy Hy)):

According to our considerations,the random variable E(u) is the sum of a
GaussianrandomE; = N(0; ;); 1 0 (the badkground emissionand read
out noise)and a PoissonnoiseE,(u): E(u) := E(u) + E(u).
We usetest imageswith intensities scaledto [0; 1]. In practice theseintensi-
ties are related to numbers of photon courts provided by the CCD sensors.
An intensity u correspnds to a photon court of Iy U photons, where
I ohot > 0 is an unknown factor. We approximate the Poissondistribution of
the pthton court by Gaussiannoisewith zeromeanand standard deviation
2 = lpnot U. Scalingthis distribution to the interval [0; 1], we derive a
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Eaussiandistribution for the intensity of zeromeanand standard deviation
U=lphot. Thus we can approximate E, by a Gaussiandistribution of zero

meanand standard deviation ™ 5, uwith 5, = Ip:m :

Let us showv how arti cial structures arise when applying ‘classical' methods
for reconstruction from noisy chopped and nodded data.

We concettrate on chopping amplitudesthat are small with respectto image
size.

Figure 3.11: Left: The rst test image. The white frame marks the domain
, Wherethe chopped data arerecorded;right. Corresponding chopped data
with chopping amplitude H = (5; 3) including noisewith variances ; = 0:05
and , = 0:0001.

Fig. 3.11, left, shows our rst articial test image. Chopped and nodded
data for H = (5; 3) distorted by Gaussiannoiseprocessesvith ; = 0:05and
> = 0:0001are shavn in Fig. 3.11,right. The signal-to-noiseratio (SNR) is
254752dB L.
Fig. 3.12,top left and right, shaws the result of applying method (B) with
= 0:1 after 10 and 100 iterations, respectively, to the data (H = (5; 3)).
The samemethod is applied to test data with H = (5:5; 3:3) not matching
the grid spacing. The resultsfor = 0:1 after 10 and 100stepsare preseied
in Fig. 3.12,bottom left and right, respectively.

lLet u: ! R be a signal with minimum um;, and maximum Umax, &: ! R a
distorted signal and the standard deviation of u d, then the signal-to-noise-ratio is
de ned by SNR := 20log,, Ymex Hmn_
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Figure 3.12: Top left: Reconstructionfrom the noisy data givenin Fig. 3.11,
right, using method (B) with = 0:1 after 10 iterations. Top right: Re-
construction after 100 iterations of method (B) with = 0:1. Bottom left:
Reconstructionwith H = (5:5;3:3) using method (B) with = 0:1 after
10 iterations. Bottom right: Reconstructionfrom the samedata after 100
iterations of method (B) with = 0:1.

The computation times ? of method (B) were 0.05 secondsfor H = (5; 3)
and 10 steps, 0.2 secondsfor H = (5:5;3:3) and 10 steps, 0.5 secondsfor
H = (5;3) and 100stepsand 1.9 seconddor H = (5:5; 3:3) and 100 steps.

As the chopped and nodded data provide information about the objects'
edgesthe reconstructionof point-lik e objects and boundary regionsof larger
objectsis satisfactory at an early stageof the iteration. The interior of larger
objectsis reconstructedat a later stage. With increasingnumber of iterations
arti cial structuresrise from the noisecourteracting with the reconstruction

2Computed on an AMD 64 FX 3500+, computations times have been averagedover
seweral runs
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process.

In the casewhen the chopping points coincide with the discrete sampling
points, the reconstruction is more e cient. If chopping points and data
points do not coincide,the reconstructionis smoother, the iteration shows a
slower corvergenceand thus more stepsare neededfor the reconstruction of
interior parts of the objects.

Method (A), the cg-basedmethod or the Fourier-basedreconstruction show
similar corvergenceproperties and the same occurrenceof arti cial struc-
tures. For the cg-basedmethod it canbe obsenedthat the residualdecreases
in the beginning of the cg-iteration but starts oscillating after a few steps.
This suggestan early termination of the iteration whenthe rst local mini-
mum of the residual is readhed. Even more, we apply only few stepsof the
cg-iteration in our tests.

Let us comparetheseresult with those obtained by applying the modi ed
method (B) and the cg-basedmethod to noisy test data, with median I-
tering applied after ead step of iteration. (Method (A) in generalproduces
resultsthat are more blurred. They are not presered here.)

Figure 3.13: Left: Reconstruction from the data in Fig. 3.11, right, with
chopping amplitude H = (5;3) using method (B) with = 0:1 and 100
iterations combined with median ltering (lter sizem = 1). Right: Recon-
struction after 30 iterations of the cg-basedmethod combined with median
ltering (Iter sizem = 3 and m = 1in the last iteration, respectively).

Fig. 3.13,left shows the reconstructionof the rst testimagefrom noisy test
data (seeFig. 3.11) after 100iterations of method (B) and additional median
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ltering (lter sizem = 1) after ead iteration. The results of applying the
cg-basedmethod with 30 stepsand median ltering (lter sizem = 3 except
for the last step, wherewe usedm = 1) on the samedata set are preseined
in Fig. 3.13,right. The computation times were 3.3 secondsgor method (B)
and 4.4 seconddor the cg-basedmethod. Comparedto the reconstructions
with classicalmethods (seeFig. 3.12) arti cial structures rising from noise
in the data are signi cantly removed by both methods.

Figure 3.14: Left: The secondtest image. Right: the correspnding noisy
chopped and nodded imagefor h = (10;3), ;= 0:002and , = 0:00001.

Besidethe test image introduced above we usetwo other test images. The
secondtest image showvn in Fig. 3.14 cortains objects with a wide halo ex-
tending acrossthe boundary of the domain , in which the data is collected.
In Fig. 3.14, left, the signal u on | is visualized. The domain of data
acquisition is marked with a white rectangle.

We simulated multiple chopped data setswith v e di erent chopping am-
plitudes (10; 3), (0;7), (10;10), (7;14) and (15;0). The chopped data for
H = (10;3) on are shawn in Fig. 3.14,right. Articial noisewas added
with ;= 0:001and , = 0:00001related to the weak structures cortained
in the chopped data. The signal-to-noise-ratiois 40.0494dB.

For the reconstructionfrom thesedata, we comparedi erent strategies. First
we apply the cg-basedmethod with 40 stepson ead data set with median
ltering (lter sizem = 3, with m = 1 in the last step). For a fair com-
parison with methods using multiple sets,we depict the best result of these
reconstructions,which waswith H = (7;14), presened in Fig. 3.15,top right.
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Figure 3.15: Top left: Reconstructionwith the cg-basedmethod after 40 it-
erations (without median ltering). The chopping amplitude isH = (7; 14).
Top right: 40 iterations with the cg-basedmethod combined with median
ltering with Iter sizem = 3 (m = 1 in the last iteration). Note that
for comparisonwith the method of multiple chopped data setswith ampli-
tudesh = (10; 3), (0; 7), (10; 10), (7; 14) and (15; 0) we depictedH = (7;14)
showing bestresults by independert reconstruction. Bottom left: Combined
image using the multiple chopped data calculating the pointwise median af-
ter independert reconstruction. Bottom right: Reconstructionusing multiple
data setsand conbining the results after each iteration using the pointwise
median.
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The reconstruction from the samedata using the cg-basedmethod with 40
stepsbut without median ltering is shavn in Fig. 3.15,top left. As for the
rst test image, the reconstruction method conbined with median ltering

is able to remove arti cial structures signi cantly comparedto the method
without median ltering. A slight e ect of negative courterparts of the point
sourcepresett in the data is obsenable (cf. the reconstructionartifacts men-
tioned in Sect. 3.2.1).

Let us considerthe reconstruction from multiple data sets. First we apply
an independert reconstructionon ead data set, using the cg-basedmethod
with 40 stepswithout median Itering. The nal resultis obtained by calcu-
lating the median of thesereconstructionsfor eat data point (seeFig. 3.15,
bottom left). This strategy reducesthe appearanceof arti cial structures,
but the result still cortains noise. The conbined reconstruction on multiple
data setsby applying the cg-basedmethod with 40 iterations (without me-
dian Itering) and calculating the pointwise median of the reconstructions
after ead iteration (seeFig. 3.15, bottom right) is able to properly remove
arti cial structuresarising from noise. Additionally, the e ect of the negative
courterparts of the point sourceis compensated.

The computation times were about 0.9 secondsfor the cg-basedmethod
without median ltering and about 5.5 secondswith median ltering. The
reconstruction with multiple chopped data setstook about 4.7 secondswith
independert reconstructionand nally averagingand 5 secondswith calcu-
lating the median after ead iteration. Thus the numerical e ort of using
multiple data setsis comparablewith the e ort of median Itering.

The third test imageis an obsenation of the planetary nebula Menzel 111

(called the 'ant nebula’) (Fig. 3.16, left). The data are given with oating
point precisionand showv up alargedi erence betweenintensity of the certral
star ( 0:0683)and the intensity rangeof the nebula( 10 ). Visualization
is performedby scalingthe intensities using

S:R! [0;1]
0g(P ()= Imax) + 0:1) log(0:1).

log(1:1) log(0:1) 1

S(x) = min

where I nax > 0 is the maximal intensity of the original data, P(x) is the
projection on [0; | max ], and 0 < 1 is somescalingparameter. The inter-
val [0; 1] then is mapped to gray valuesbetweenO and 255. For the results
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Figure 3.16: Left: Third test image, planetary nebula Menzel I11, Right:
Arti cial chopped data for H = (14; 10) including noise ; = 5 10 ® and
2 = 10 6.

presened herewe used = 0:01.

We simulated the chopping and nodding processadding noise with ; =
5 10 ® and , = 10 8, chosenwith respect of the weak intensity of the
nebulain the rangeof 10 4.

We usedsmall choppingamplitudesup to 14 Pixelsrelative to the imagesize.
Note that for larger chopping amplitudesin the range of the object size,the
reconstruction can be performedwith only few iteration stepswith the noise
ampli cation being negligible.

We provide v edi erent chopped and nodded data setwith chopping ampli-
tudes (14; 10), (14;0), (14; 14), (10;0), and (7; 14). The chopped and nodded
data setfor H = (14;10) with SNR = 429788dB is presernted in Fig. 3.16,
right.

Fig. 3.17,top left, shavs the result using method (B) with 100iterations on
this data set, applying median Itering with Iter sizem = 1 after ead iter-
ation. The result of the cg-basedmethod on the samedata setwith 20 steps
and median Itering (m = 3 exceptfor the last step, wherem = 1 was used)
is given in Fig. 3.17, top right. Both methods remove arti cial structures
reasonablywell. A blurring e ect of the median ltering is obserable.
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Finally we apply combined reconstructionsusingthe v e chopped data sets.
Fig. 3.17,bottom left, shavs the reconstructionfrom applying 100iterations

of method (B) to eat data set separately and calculating the pointwise
median after ead iteration. The result of the cg-basedmethod after 20

steps combining the results after ead iteration, is presered in Fig. 3.17,

bottom right. Both reconstructionsare of comparablequality.

The computation times for single data chopped and nodded data setswere

about 2.5 secondsusing method (B) with median ltering and 0.9 seconds
using the cg-basedmethod with median lItering.

Using the v e di erent chopped data setsand calculating the median after

ead iteration, 2.8 secondswere neededusing method (B) and 1.6 seconds
using the cg-basedmethod.

To summarize, we obtained good reconstruction results for the proposed
methods on noisy data, wherethe results of classicalmethods show a signif-
icant rise of arti cial structures. The results of reconstructionfrom multiple
data setsshow a better quality than these of iterative methods conmbined
with median Itering and is preferableif the required data are available. In
caseof single chopped and nodded data sets a reconstruction with median
Itering is advisable.
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Figure 3.17: Top left: Result of method (B) after 100 iterations in combi-
nation with the median Itering with lter sizem = 1. Top right: Result
of the cg-basedmethod after 20 iterations in combination with median I-
tering with sizem = 3 exceptfor the last iteration, wherewe usedm = 1.
Bottom left: Result of a combined reconstructionwith method (B) ( = 0:1,
100 steps) using multiple data from chopping amplitudes (14; 10), (14;0),
(14; 14), (16;0), and (7; 14). After ead iteration step the reconstructedim-
agesare reinitialized with the pointwise median. Bottom right: Result of a
combined reconstruction (pointwise median) with the cg-basedmethod with
20 stepsusing the samemultiple data set.



Chapter 4

Results

4.1 Steepest Descent

41.1 Comparison of F1, F2and F 3
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Figure 4.1: First test data set

In this section we compareresults of applying a steepest desceh method
(algorithm B) using the proposedfunctionals F 1(u), F 2(u) and F 3(u).

We start with the one-dimensionakase:

Fig. 4.1 shaws linear interpolated discrete data sampledfrom function ug :
[0;99]! R;up = (3366 With sampling points x; = i;1 = 0:::99. (We use
h=1)

Sincewe do not assumeany distortion, we have u = up.

111
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1.2
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original data
F1(u) with alpha=600, eps=0.01 -------
F1(u) with alpha=600, eps=0.001 --------
F1(u) with alpha=600, eps=0.0001
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Figure 4.2: Result of minimizing F 1(u) with = 600and" = 0:1; " =
0:01, " = 0:001and " = 0:0001using the steepest desceh algorithm.

We applied the NCBV- Iter usingF 1(u), F 2(u) and F 3(u) with = 600,
steps= 10° (maximal number of steps)and " = 0:01; 0:001and 0:0001. The
steepest desceh was stopped, when one of the following criteria was satis ed
(cf. Section2.5.1):

a) Stepsize t decreasedelov t = 10 0 or

b) jr F(u)j Fuw = 10 *°,wherer F =r F 1(u),r F 2(u)orr F 3(u).

Figs.4.2,4.3,and 4.4 show the result of NCBV- ltering usingF 1(u), F 2(u)
and F 3(u) for = 600and"” = 0:01," = 0:001and" = 0:0001.

Applying the NCBV- Iter for the di erent data sets,we obsene the following:

The step size decreasesluring the rst iterations, then stays almost
constart for the rest of the iterations. In caseof appropriately chosen
threshold t, the iteration stopsbeforereading the maximal number
of stepswhen t tio IS satis ed

The resultsshav a smaoothing e ect for larger valuesof *. On the other
hand the rate of corvergencedependsstrongly on ", seeFigs. 4.5, 4.6
and 4.7. For smallervaluesof " the cornvergenceis signi cantly slover
and thus the numerical e ort is larger.

The choice of the starting point for the steepest desceh method only
a ects the computational e ort but not the quality of the results. Set-
ting u@ = u oru@ = Qs feasible.
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1.2

T T
original data
F2(u) with alpha=600, eps=0.01 -------
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F2(u) with alpha=600, eps=0.0001
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Figure 4.3: Result of steepestdescenhon F 2(u), = 600and" = 0:1;, " =
0:01 " = 0:001land " = 0:0001.

Comparing the results of minimizing F 1(u), F 2(u) and F 3(u), we obsene
that F 1(u) shows a oscillating numerical solution to the NCBV- Itering, see
Fig. 4.2. Note that applying certral di ggences(see(2.85)) onthe data u has
a smaoothing e ect and thus the term iNzl jr nhuijj in F 1(u) is insensitive
to sud oscillations.

The considerationsin Example 2.4.6 motivate to construct a piecewisdinear
function from the data u;; i = 1;:::;N by linearly interpolating uy; 4542,
HzZla:: N 12“’“ un, Which givesa result without oscillations, seeFig. 4 8
Newerthelesssut a post-processingof the lItered data is not desirablefor

practical applications.

Applying steepest desceh to the functional F 2(u), seeFig. 4.3, we seea
slight stair-casinge ect, which is causedby the insensitivity of %(jr huj +
jr Luj) in F 2(u) to sud stair-casing.

Functional F 3(u) shows a better numerical performance,seeFig. 4.4, since
jr huij is evaluated using either a left- or right-sided di erence scheme.

The results match the analytically calculatedsolutionsof the cortinuousset-
ting argminF (u) preserted in [26].

We study computation times of minimizing F 1, F 2 and F 3 for di erent
It is obvious that the computation time dependslinearly on the number of
iteration stepswith the latter being determinedby the stopping criteria.
Table 4.1 showvs the computation times for the iteration, measuredwith use
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Figure 4.4: Result of steepestdescenhon F 3(u), = 600and" = 0:1;, " =
0:01 " = 0:001land " = 0:0001.

of the clock()-routine from a standard c-library. Iﬁdditionally the valuesfor

t, averagedover the iterations, i.e. t := ﬁps SePs 1, and F (u®®) and

r F(u®) after the last iteration are presered for di erent

We obsene that for a large number of iterations the computing time needed
per iteration step is almost constart. For a small number of iterations the
time neededper iteration step is slightly larger, which may be due to some
initializing work sud as memory allocation.

The computation time and the number of stepsfairly depend linearly on
The step size t adaptsto the magnitude of jr F (u)j, sincej tr F(u)jis
fairly constan.

The NCBV- Iter was motivated for reconstruction of data with two kinds
of errors, data recordedwith distorted sampling points and with additional
noisein the sampledvalues,but it may be usedalso for denoising. To test
the e ect of additive Gaussiannoise, we usethe test data set as shown in
Fig. 4.9, derived from data set given by Fig. 4.1 by adding Gaussiannoise
with zeromeanand standard deviation 0.01.

The results of NCBV- Itering applied to this noisy data for = 10 using
functionalsF 1(u), F 2(u) and F 3(u) areshavn in Fig. 4.10. In the left col-
umn the resultsfor F 1(u), F 2(u) and F 3(u) on the whole domain [0; 99]
are given, the right column shavs magni cations of the data betweenx = 33
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Figure 4.5: Dependenceof the corvergencerate on " for steepest descen
minimization of F 1(u®®) with = 600and" = 0:.01; " = 0:00land " =
0:0001, respectively.

and x = 66 to highlight di erencesin the strength of denoising.

Minimizing F 1(u) givesrelatively rough results, which are unfavorable for
denoising. In comparisonminimizing F 2(u) and F 3(u) provides more fea-
sible numerical results.
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Figure 4.6: Steepest desceh on F 2(u®®)
and " = 0:0001,respectively.

200000 250000 300000

= 600and " = 0:01," = 0:00%;

1800 j ' |
1700
1600
1500 |
1400 |+
1300 -
1200 p
.
1100

1000

F3(u),eps=0.01 ——
F3(u),eps=0.001 -------
F3(u),eps=0.0001 -------- i

900

1 1 1
0 50000 100000 150000

Figure 4.7: Steepest desceh on F 3(u®)
and" = 0:0001,respectively.
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Figure 4.8: Detail of the result of steepest desceh on F 1(u) with = 600
and " = 0:01, seealso Fig. 4.2. Additionally we constructed a piecewise
linear function as motivated in Example 2.4.6, referred to as 'modi ed'
result. This alternative result doesnot shaw oscillations as for the standard
linear interpolation.

time | steps| time/step | FU®) |jr F(u®)j Tt
(sec) (sec)
F1| 10| 93.30| 5000 0.01866| 41960.422 1.1410| 7.774e-05
F 1|100|92.80| 5000 0.01856| 179615.122 49.6077| 9.118e-06
F2| 10| 10.74, 240 0.04474) 44115.499 466.0976| 2.533e-04
F2|100| 34.81| 788 0.04418| 181725.112 3462.0024 1.977e-05
F3| 10| 15.83] 269 0.05886| 45296.579 439.2283| 2.601e-04
F3|100| 48.74| 862 0.05655| 185510.655 3283.4732 2.337e-05

Table 4.1: Computation times for the one-dimensionalcase minimizing
F 1(u), F 2(u) and F 3(u) for = 1G;50,100 and 200. Additionally we
provide the number for steps, the averagetime neededper step, the value
of F(u), r F(u) in the last iteration step and the step size t averaged
over the iteration steps. (The computation times were determined on AMD
Athlon(tm) 64 Processor3500+ and were averagedover 5 runs.)
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Figure 4.9: First test data setwith noise
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Figure 4.10: Left column: Reconstructionfrom noisy test data usingF 1(u),
F 2(u) and F 3(u) with = 10and" = 0:001. Right: magni cation of the
three reconstructionon the interval [33; 66].
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Figure 4.11: The test image\cards" with noisecortaining geometricobjects
and arti cial noise.

Let us alsopresem numerical results from NCBV- ltering in the two dimen-
sional case,i.e. we consider Itering of images.

Similar to the one-dimensionataseminimization of F 1(u) shows a sensitiv-
ity to noisein the data.

To demonstratethis sensitivity we considera noisy test image, presened in
Fig. 4.11. The results of applying the NCBV- Iter with F 1(u) and = 10
(Fig. 4.12,top left) and = 100(Fig. 4.12,top right) shov unsmath struc-
tures similar to thoseobsened in the onedimensionalcase. Thesestructures
rise independertly on the magnitude of and do not appear when using
F 2(u) or F 3(u), seeFig. 4.12middle row and bottom row, respectively.

Fig. 4.13 shonvs a magni cation of the lower left part of the Itered image,
using F 1(u) (left), F 2(u) (middle) and F 3(u) (right), to highlight the dif-
ferencein smoothnessof the results for di erent numerical shhemesjr puj.

Besidesthe quality of Itering, the numerical performanceof the algorithm

is of interest.

We demonstratethe computational e ort of the steepest descenh algorithm

on the functional F 1(u), F 2(u) and F 3(u) Itering the \cards" imagewith

noise. Table 4.2 shows the computation times, the number of stepsneeded
and the time neededper step for ead of the functionals F 1(u), F 2(u) and
F 3(u). Weuse Uy = 0:00land = 10or = 100, respectively. Addi-

tional the valuesF (u) and jr F (u)j and the averageof t usedduring the
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alpha | time | steps| time/step F(u) jr F(u)j t
F1| 10 | 7.08 | 483 | 0.01466 | 42738.827| 67.2354 | 1.204e-04
F1| 100 | 10.53| 761 | 0.01384 | 181894.618 725.6951| 1.173e-05
F2| 10 |10.20| 320 | 0.03189 | 44818.572| 114.5996| 1.881e-04
F2| 100 | 34.16| 1085| 0.03148 | 185592.514 614.5084| 1.265e-05
F3| 10 |12.76| 297 | 0.04297 | 45260.015| 97.6068 | 2.362e-04
F 3| 100 | 91.92| 2215| 0.04150 | 185034.626 569.3436| 8.626e-06

Table4.2: Computational e ort for the two-dimensionalcase:Total comput-
ing times and computing times per step (in seconds)of the steepest desceh
on F 1(u), F 2(u) and F 3(u) with = 10 and 100, respectively, for the
\cards" image. Additionally the valuesof F (u), jr F (u)j and averageof t
used during the iterations are given. (The computation times were deter-
mined on AMD Athlon(tm) 64 Processor3500+ and were averagedover 5
runs.)

iterations are given.

The numerical results preserted above show that a large number of iteration
stepsis neededto match the stopping criteria t < ty or jr F(u)j <

F w1, respectively, providing a good appraximation of the exact minimizer,
but alsoresulting in high computational e ort.
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Figure 4.12: Top row: Result of NCBV- Itering using F 1(u) with = 10

(left) and = 100 (right). Middle row: Result of NCBV- ltering using
F 2(u) with = 10 (left) and = 100 (right). Bottom row: Result of
NCBV- ltering using F 3(u) with = 10 (left) and = 100 (right). For

eah Itering we used” = 0:001. The resultsusing F 2(u) and F 3(u) are
similar, whereasthe results using F 1(u) shav someunsmath structures,

seemagni cation in Fig. 4.13.
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Figure 4.13: Magni cation of a detail in the imagesin Fig. 4.12,left column
( = 10). Steepestdescen on functional F 1(u) producesresults with small
oscillations. These do not occur when functionals F 2(u) and F 3(u) are

minimized.
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4.1.2 Filtering prop erties of the NCBV-Filter

In the following we concenrate onthe numerical resultsof minimizing F 3(u)
and use" = 0:001for providing a good trade-o betweena the quality of the
numerical solution and the numerical e ort.

T T
original data
F3(u),alpha=100 -------
1F e — F3(u),alpha=200 -------- —
s RN F3(u),alpha=400

08

0.6

04 -

02

br\\-; -
0

szt ) L L L M=o
0 10 20 30 40 50 60 70 80 90 100

Figure 4.14: NCBV- ltering using F 3(u) with " = 0:001and = 10Q 200
and 400.

Let usinvestigatethe e ect of the regularization parameter . We useagain
the one-dimensionatest data preserted in Fig. 4.1.

Fig. 4.14 shows the results of the NCBV- ltering using functional F 3(u)
with dierent values = 100 200and 400.

As expected, with rising the secondpart of the functional basedon the
BV -semi-normbecomeamore important than the t-to-data term and thus
the di erence betweendata and computed solution increases.

We obsene that the numerical results match the theoretical solutions pro-
posedin in [26].

In 2D the Itering e ect on geometricalobjects is of importance. For study-
ing the behavior of the NCBV- Iter we introducea secondest imagereferred
to asthe \puzzle" image,seeFig. 4.15,and apply the lter on the noise-free
data.

NCBV- Itering is applied to this test imagewith = 10 (cf. Fig. 4.16,top
left), = 50 (middle left) and = 100 (bottom left). The di erence of the
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Figure 4.15: The test image\puzzle" cortaining geometricobjects and areas
of linear increasingintensities. Note the structures resulting from a dithering
processin theseareasand inside the puzzle objects. We will seethat these
structures strongly are a ected by NCBV- Itering.

Itered imagesto the original data is show in Fig. 4.16,top right ( = 10),
middle right ( = 50) and bottom right ( = 100), respectively

Herelby, for data (uij )¢ij)2 and (vij )ijy2 the dierence (Ui; Vi )jya IS
visualized by mapping the interval [ m;m];m = maxfjuy;  vijjj (i;)) 2
| g to the interval [0;255] using s(x) = 128+ x 127#=m. We refer to
(s(uij  Vij))jH2 asthe dier ene imagein the following.

Causedby the way of creating, this imagecortains somedithering-like struc-
tures in the areasof linearly increasingintensity and inside the 'puzzle' ob-
jects (cf. magni cation shown in Fig. 4.17,left column).

One e ect of NCBV- Itering on the \puzzle" image is that the dithering
structures in the original image are lItered out, as for exampleinside the
two squaresin the top left and top right part of the imageand parallel level
lines are formed out. Also somedithering structures inside the 'puzzle’ ob-
ject are smoothed, seeFig. 4.17,right column. Thesesmoothing e ects occur
even for small valuesof , sincethesedithering structures strongly in uence
the NCBV-functional by changingthe BV-semi-norm. Thus the correspnd-
ing structures are smoothed out in the very early stepsof iteration.

Another e ect of NCBV- Itering concernsthe boundariesbetweenhomoge-
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Figure 4.16: Steepest desceh minimization of F 3(u) for the \puzzle" image
with " = 0:00land = 10 (top), = 50(middle) and = 100 (bottom),
respectively.

neousregionsin the image:

In [27] we have showvn that minimizing the NCBV-functional F (u) for small
is related to Mean Curvature Flow (MCF).
This relationship can also be recognizedin the results: Let us considerthe
bright objects in the test image,i.e. homogeneougarts being brighter that
their surroundingbadground. Wethink of the boundariesof theseobjects as
discreterealizationsof piecewisali erentiable curveswith positive curvature
at corvex parts of the objects and negative at concave parts. In Fig. 4.16,
left column, we seethat the di erence between Itered and original imageis
most signi cant at points of large curvature of the objects' boundary, and
at points, wherethe curvature becomesliscortinuous (corners), respectively,
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Figure 4.17: Left: Detailed view of the secondtest image. Middle: Details
of the Itered imagepresened in 4.16,top, with = 10. Dithering e ects in
the original image are smoothed out by NCBV- Itering already for small

Right: Di erence betweenthe details of the original and the Itered image.

whereasat straight boundariesonly a weak smaothing is obsenable, Thus
the strength of Itering is depending on the objects' curvature, leadingto a
decreaseof the meancurvature of the boundary.

Note that for larger valuesof the smaothing e ect resultsin a blurring of
the objects' boundary.

4.1.3 Comparison between NCBV-Filter, NCH-Filter
and TV-minimization
Let us comparethe results of minimizing the NCBV-functional with the

results of minimizing the NCH-functional and total-variation (TV-) mini-
mization, [45], respectively.

The functional for TV-mgnimization being related to the NCBV-functional,
isgiven by Fry(u) =  (u(x) u (x))?+ jr u(x)j dx. Again we usea
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steepest desceh method.

We begin with the one-dimensionakase:

T T
Original data
data with destorted sampling points -------
I
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02

0

1 IH 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180

Figure 4.18: Original data and data recordedwith distorted samplingpoints,
wherethe standard deviation of the distortion is = 5.

We test the NCBV- lter for reconstruction of data recordedwith distorted
sampling points. Fig. 4.18 shaws the original and the distorted test data
used.

In Fig. 4.19 the result of the NCBV- Itering with " = 0:01land = 10
and = 50, respectively, is plotted. The result for = 10 still showvs a
slight stair-casinge ect aswell assomepeaksremaining from the distortion,
whereasthe result for = 50is smaother but the reconstruction of the left
edgeof the graph is not asgood asthe previousresult.

Applying the NCBV- Iter with = 20and" = 0:001(seeFig. 4.20)provides
a satisfactory reconstruction.

We comparethe resultsof NCBV- ltering to thosederived from applying the
NCH- Iter. The results of applying this Iter to the test data with distorted
sampling points is shovn in Fig. 4.21for = 100andfor = 1000,respec-
tively. We obsene that the NCH- lter provideslessfeasibleresultsthan the
NCBV- Iter, since more reminders of the distortion are obsened ewen for
larger

Let us additionally comparethe results of NCBV- Itering with those of the
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Figure 4.19: Reconstruction of the original data from distorted data using
NCBV- ltering with = 10and = 50, respectively, and " = 0:01.

related TV- Itering. Fig. 4.22 shows the results of applying the TV- Iter
with = 05and = 1, respectively.

Comparedto results before, TV- Itering provides reconstructions of data
with distorted sampling points of lessquality: It can be recognizedthat the
edgesof the graph are not reconstructedwell. There is a strong stair-casing
e ect aswell as a lossof corirast. Therefore TV- ltering is not a feasible
alternative to NCBV- ltering for the reconstruction of data with distorted
sampling points.

At the endof this section,we comparethe NCBV- Itering with NCH- Itering
and TV-minimization for the reconstruction of imagesrecorded with dis-
torted sampling points.

Fig. 4.23,right, shows the \cards" imagewith sampling point errors.

To comparewith, the undistorted imageis presened in Fig. 4.23, left.
Note that sampling points which after distorting lie outside the areaof the
original image, are assiate with zero (black) intensity.

The reconstructionby NCBV- ltering usingF 3(u) with = 20and = 100
is presented in Fig. 4.24,top left and right, respectively.

With regularizationparameter = 20the NCBV- ltering providessatisfying
results, sincethe e ect of the distortion is reducedsigni cantly. For = 100
the NCBV- ltering provides a comparatively smooth reconstruction, with
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T T T
original data
13,alpha=20,eps=0.001 -------
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Figure 4.20: Reconstruction of the original data from distorted data using
NCBV- Itering with = 20and" = 0:001.

blurring the edgestoo much. Comparedto theseresults the NCH- Itering

with = 100 (Fig. 4.24, bottom left) using a steepest desceh with a func-
tional correspnding to F 3(u), providesresults with a reconstruction of the
objects' boundary with lesssmooth curvature. Applying the NCH- Itering

with = 1000 we obsene a better reconstruction of the objects’ bound-
ary. Additionally the result is lesssmooth than those of the correspnding
NCBV- Itering with = 100, but being lesssatisfactory as the results of
NCBV- ltering with = 20. To sumup, the NCBV- ltering is more prefer-
able than NCH- Itering ewen for parameter to be chosenasthe most fea-
sible for ead caseindependerily.

For a comparisonwe also apply the TV-Iter with = 20 (cf. Fig. 4.25,
middle) to the test data with distorted sampling points. Similar to the the
one dimensional casethe result shavs a stair-casinge ect. Note that the
black spots in the TV- Itered image are remaindersof the distortion, van-
ishing when applying the TV- Iter with larger valuesfor

Moreover it doesnot have the e ect on the curvature of the objects bound-
ariesasthe NCBV- lter (cf. Fig. 4.25,left, for = 20), i.e. the boundaries
are not reconstructedthat straight, asshown by the di erence imagebetween
NCBV- Itered and TV- ltered imagesin Fig. 4.25, right, aswell as by the
plot of level lines for both results, seeFig. 4.26.

Sincethe NCBV- Iter was motivated for the special caseof distorted sam-
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Figure 4.21: Reconstruction of the original data from distorted data using
the NCH- lter with = 100and = 1000,respectively.

pling points with additional additive Gaussiannoise,we alsowant to provide
a test image for this particular noise model, cf. Fig. 4.27, left. We apply
both the NCBV- Itering for = 20andthe NCH- ltering with = 1000to
thesetest data. The results are provided in Fig. 4.27 middle (NCBV) and
right (NCH). We obsene that the NCBV- Itering is ableto remove the noise
content of the test image satisfactorily well. In cortrast for NCH- ltering a
large value of hasto be provided to reducethe noisecortent of the image
signi cantly. Newerthelessa notable fraction of the noiseremains.
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Figure 4.22: Reconstruction of the original data from distorted data using
the TV-Iter with = 0:5and = 1.

Figure 4.23: Left: Original image. Right: our third test imagewith distorted
samplingpoints. Forthe randomshift = ( 4; ,) Gaussianrandomvariables
x; y With zeromeanand standard deviation = 2 are used.
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Figure 4.24: Top left: result of the steepestdescen algorithm on F 3(u) with
= 20. Top right: result of the steepest desceh algorithm on F 3(u) with
= 100. Bottom left: result of NCH- Itering with = 100. Bottom right:

result of NCH- Itering with = 1000.

Figure 4.25: Left: result of the steepest desceh algorithm on F 3(u) with

= 20. Middle: result of the steepest desceh algorithm using the TV-
functional with = 20. Right: di erence betweenthe NCBV- Itered image
(left, = 20)and TV- ltered image (middle).
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Figure 4.26: Left: Level lines of a detail of the NCBV- Iltered image in
Fig. 4.25,left, for intensities 32, 64, 96, 128,160,192,and 224. Right: Level
lines of a detail of the TV-minimized imagein Fig. 4.25,right, for the same
intensities. It can be obsened that NCBV- Itering provides smoother level
lines for the imagewith sampling point errors than TV-minimization.

Figure 4.27: Left: test imagewith distorted sampling points and additional

noise. Middle: result of the steepest desceh algorithm on F 3(u) with =
20. Right: result of the steepest descen algorithm usingthe NCH-functional

with = 1000.



4.1. STEEPEST DESCENT 135

4.1.4 Filtering with the log-prior

Figure 4.28: Left: test imagewith distorted sampling points. Middle: result
of the steepestdescen algorithm appliedonF 4(u) with = 10and = 0:1.
Right: result of the steepest desceh algorithm using functional F 3(u) with

= 10. The result of minimizing F 4(u) showvs a better presenation of
texture, but with wealer Itering of the distortion.

In Section 1.5 we motivated a functional basedon the log-prior, see(1.62).
For the implemenation we usethe functional

X
F 4(u) := h? fouiy Uy ir nuigj); (4.1)
()2

wheref ¢( ;a) is the corvexi cation of

2
f(: = —+ jg | jaj
(:a) 23 9 0gJq
with respectto a, and apply a steepest decen method. We refer to the min-
imization of (4.1) asthe log- Iter .

For testing we usethe \mountain" imagewith sampling point errors. A de-
tail of the distorted imageis shown in Fig. 4.28, left. Note that this image
cortains mainly textures, which is the reasonthat the numerical gradiert
of the original image doesnot conceitrate at zero (seehistogram plotted in
Fig. 1.11). Using the log-prior we expect a similar distribution of the gradi-
ert for the ltered image.
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A detail of the result of applying the lter withh = 10and = 01is
showvn in Fig. 4.28, middle. For comparisonwe plotted alsothe result of the
NCBV- lter F 3(u) usingthe same = 10, seeFig. 4.28,right. Additional
parametersfor both applicationswere"” = 0:001and steps= 1000.

It canbe obsened that the log- lter better presenesthe textures in the im-
age (forest and clouds), but with wealer ltering of the distortion. We note
that care hasto be taken when choosing parameter . Applying the Iter
with large valuesof resultsin rarely ltered images.

Figure 4.29: Left: test imagewith additive Gaussiannoise. Middle: result of

the steepest desceh algorithm applied on F 4(u) with = 10and = 0:1.

Right: result of the steepest desceh algorithm using functional F 3(u) with
= 10.

We alsotested the Iter on a noisy image, seeFig. 4.29, left. The result of
minimizing (4.1) with = 10and = 0:1is showvn in Fig. 4.29, middle. As
in the examplebefore,a comparisonwith NCBV- ltering using the same
shaws that textures are better presened for the log- lter.

We note that when increasing parameter while keeping xed the re-
sults becomessmother, indicating that the smaoothing e ect provided by
term jr wu;jj in (4.29) compensatesthe texture preservinge ect of term

logjr nui;j.
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4.2 Result of the FE-based Algorithm(2D)
and Comparison

In this sectiona comparisonbetweenthe results from the steepest desceh
algorithm (algorithm B using functional F 3(u)) and the results of the FE-
basedalgorithm (algorithm D in Section2.5) is drawn in view of both quality
of ltering and performance. We usethe test imagesfrom the previoussec-
tion: the \puzzle" image (seeFig. 4.15), the \cards" image with noise(see
Fig. 4.11), and the \cards" image recordedwith distorted sampling points
(seeFig. 4.23).

Fig. 4.30 shaws the result of NCBV- ltering the \puzzle" image basedon
steepestdescen with = 10 (top left) and = 100 (middle left), aswell as
the resultsfrom the FE-algorithm with = 10(top right) and = 100(mid-
dle right). Additionally the di erence betweenthe results of correspnding
valuesof are printed. It can be recognizedthat for small valuesof both
algorithms provide comparableresults, seetop row in Fig. 4.30. For larger
valuesof dierencesat the objects edgesare obsenable (seedi erence im-
age of both results preserted in Fig. 4.30, bottom left): the result of the
FE-basedalgorithm revealsa stronger smaothing e ect than the algorithm
basedon the steepestdescen On the other hand cornersare more presened
by the FE-algorithm and thus the curvature minimizing e ect at thesepoints
is wealened.

For the \cards" image with noise, the samebehavior can be obsened, see
Fig. 4.31: For small (top row) the results are comparable,the di erence of
both result (top right) points out that the result of the FE-basedalgorithm
cortains little more remaindersfrom noisethan the result from steepest de-
scen. For largervaluesof a strongersmaothing e ects at objects edgedor
the FE-basedalgorithm can be recognizedin comparisonwith the steepest
descenh algorithm.

The e ect of relatively strong smoothing of edgesfor large is even more
obsenable for the results of Itering the \cards" imagewith distorted sam-
pling points, seeFig. 4.32. Wethink that this is dueto elemet-wise constart
appraximations of functions a(u) and b(u), cf. Sect.2.5.2.

Besideghe quality of ltering we areinterestedin comparingthe performance
of both algorithms. Table 4.2 showns the computation times for the results
presented above.

Note that for the steepest desceh algorithm we provided t, = 10 ©,
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Computation time (sec)
Testimage Steep.desc.F 2(u) | Steep.desc.F 3(u) | FE alg.
\Cards" | 10 10.20 12.76 3.81
with noise| 100 34.16 91.92 5.40
\cards" | 10 99.22 122.53 5.17
with dist. | 100 165.93 193.27 20.80
\puzzle" | 10 249.74 290.50 11.38
100 252.09 286.31 28.95

Table 4.3: Computation times of FE-basedalgorithm versussteepestdesceh
algorithm using F 2(u) and F 3(u).

Fio = 10 % and uyg = 0:001 as well as a maximal number of itera-
tion steps. In caseof the secondtest image the iteration stopped after the
limit of 500 stepswasreaded and thus the computation times were approx-
imately the samefor both valuesof

For the computational e ort of the FE-method, we note the following:
Firstly, we usea xed number of 50 stepsfor the x point iteration and
a maximal number of 100 iterations of the cg-soler usedin eat step of
the outer iteration. It turned out that it is more ecient to reducethe
maximal number of iteration stepsfor the cg-soher in the beginning of the
outer iteration, sincethe initial stepsize t in generalis in-appropriate and
is adapted se\eral times. For this adaption a small number of cg-stepsis
sucient. Herewe usedonly 10 iteration stepsfor the cg-iteration during
the rst 10 stepsof the outer iteration.

Secondly we investigate the e ect of on the computational e ort. It is
obsened that the computation times are smaller for smaller

Note that using a xed number of iteration stepsfor the outer and inner
iteration would lead to computation times independert from . In our al-
gorithm we provide maximal numbers of iteration stepstogether with other
criteria to stop the inner and outer iteration, respectively: For the cg-soler,
we provide a threshold for the residual. Experimerts shav that the number
of stepsneededfor the cg-soler decreasesvith subsequen outer iteration.
In somecaseswe obsened that after someouter iteration stepsthe resid-
ual of the currert iterate u® is smaller than the threshold provided for the
cg-soher and consequetty the cg-soler does not changethe iterate , i.e.
uG*d = u® which is a criterion to stop the outer iteration.

Note that both e ects, the decreaseof iterations performedby the cg-soher
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and the early termination leadto an adaption of the computational e ort to
parameter , ascanbe seenin Table 4.3.

A comparisonbetweenthe computation times for both algorithms shows a
better performanceof the FE-basedalgorithm asthe steepest desceh algo-
rithm, but to the disadvantage of lessexact result for large valuesof

4.3 Summary

We implemerted a steepest minimization of F ,(u) basedon di erent numer-
ical schemesjr nu;;j. The results shav that functionals basedon a combi-
nation of right- and left-sided nite di erences provide the bestresults. The
steepest desceh method hasthe drawbadk of high computational e ort.

As alternative we implemgrted an algorithm for solving the optimality con-
dition for a minimizer of f°u u ;jr uj) a semi-implicit iterative scheme
and nite elemen for discretization. The FE-basedalgorithm shaws a better
computational performancethan the steepest desceh method with su cien t
quality of results. Thus for practical applications the FE-basedalgorithm is
recommendable.
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Figure 4.30: Top left: result of the steepestdescen algorithm with functional
F 3(u) and = 10. Topright: result of the FE-basedalgorithm for = 10.
Middle left: result of the steepest desceh algorithm with functional F 3(u)
and = 100. Middle right: result of the FE-basedalgorithm for = 100.
Bottom left: Dierence imagefor = 10. Bottom right. Dierence image

for = 100.
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Figure 4.31: Top left: result of the steepestdescen algorithm with functional
F 3(u) and = 10. Top middle: result of the FE-basedalgorithm for = 10.
Top right: Dierence imagefor = 10. Bottom left: result of the steepest
descenh algorithm with functional F 3(u) and = 100. Bottom middle:
result of the FE-basedalgorithm for = 100. Bottom left: Di erence image

for = 100.
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Figure 4.32: Top left: result of the steepestdescen algorithm on F 3(u) and
= 10. Top middle: result of the FE-basedalgorithm for = 10. Top right:
Di erence imagefor = 10. Bottom left: result of the steepest descen
algorithm on F 3(u) and = 100. Bottom middle: result of the FE-based

algorithm for = 100. Bottom left: Di erence imagefor = 100.
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Additional results
A.1 Results for Chapter 1
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With (A.3) andexp(:) 1on(1 ;0]wehave
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exp g ds= 2 exp g ds
1 c 0 c
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Moreover with transformation t := £ we have
YA S1 2 Z 1
D a2
. exp e ds= R t—zexp 7 dt: (A.5)
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o exp( bx?) dx =
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that Z (22 2Z 1 2 212
S d dt
; exp s s st exp 7
ZSll 2,242
s exp L (A.6)
o "
_ @2 C_o ¢C
B IR I
Inserting (A.1) into (A.6) gives
Z 2 P— P—
( 2 a ¢ c
ds — —= — A7
i exp " s 5 Nl (A7)
With (A.2) we have
s
. . 2 a p_
js2 sij s2= ——=0( a (A.8)
and
Z, 5 Z ) p__
exp (9) ds exp (9) ds= —— (A.9)
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p__
Inserting (A.7), (A.8) and (A.9) into (A.4) giveswith C := 65— that

ﬁ ds C+ O(pé);

which provesthe rst statemen.

Let us proof GY0) < E’ ;
SinceG(a) = O(1+ = a), the Vitali-Convergence-Theoren{see[1]) asserts
that

@
GH(a) = —(a;s) ds:
1) . @( )
Ry p—
Thuswith ; exp( bx?) dx= &
Zl
GY0) =2 @(0; s) ds
0o ,@
12(s -2 S a)2
=2 g_exp g dsa_o
0 c S c =
1 2
=2 ZC exp (9 ds
0
a4 P< o P-
2 - e
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A.2 Results for Chapter 2

Lemma A.2.1. Letjr hu;j beasin Example2.4.6 or 2.4.7 and

X Z
Fr(u) = feui ujr nij)FS(u) = f%u  u;jr uj);
i=1
with f ¢( ;a) satis ying assumptions (a4) and (a5) , being monotonusly,
increasing with respect to a and satisfying

it Gl T2z (A.10)
Moreover let

up := argminF{(u)
u2RNh

and u, 2 WYP() an interpolation asin Examples2.4.6 and 2.4.7.
In particular we have

Jroun(xi)j Jr nuij; i =100 Ny (A.11)

For every" > 0 there existsh; > 0 suchthat for everyO< h h;

F°un) Fr(uy)+™ (A.12)
Proof:
Using Theorem 2.3.4we can chooseh, > 0 sud that forO< h  h,
Fr(up) Fun " (A.13)
To prove (A.12) we shaw that
Xih
Feun) h Ui usjr un(xi)j)
=1 ! ! A.14
o ! ! (A.14)
2 h]r huij + C.Log h;
i=1
whereC, is the Lipschitz-constart of u , and
X X
h o f5u usir un()i)  h Fou Ui pu): (A.15)

i=1 i=1
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To prove (A.14) we consider

X
F(uy) h o F5u  ugsjr un(xi)j) (A.16)
%h 7 i=1
feun(®)  u (X);jr un(x)j)  hf “(un(xi) U (X;):jr un(Xi)j)
=2 {z }
=Ty
Xh Xh
+ hfun(xi) u (X);jr un(xi)j) h  fSu u;jr un(x)j) :
i=1 | {Z i=1 }
=To

Ty, referto the di erence betweenusingexactand numericalintegration, T,;
concernthe di erence betweenuy and uy, at the points x;; i = 1;:::; Ny.

We estimate Ty;: Sinceuy, islinearon Q; andu andf ¢( ;a) arecortinuous,
we can nd y; 2 Q; sud that
Z

Q_fC(Uh(X) u (X);jr un(x)j) = hf “(un(yi)  u (vi);ir un(yi)j): (A.17)

Thus
Ty = h£%un(yi) U (V)sdr un(yi)j)  FEun(xi) U (Xi);jr un(xi)j) :
Using the triangle inequality, it follows that
T hfSun(y)) U (vi)sir un(yii)
fEune) U (6);0r un(%)j)
(A.18)
+h fun(s) U (6);ir un(s)i)
fun(xi) U (xi);jr un(xi)j)

From (A.10) using that r un(:) = r up(X;) on Q; it follows that for z 2
Qi i =1, Ny

hfun(z) u (@:jr un(2)j) Fuls) U C&)jr un(xi)j)

P o . (A.19)
2h jun(z) un(sk)j+iju(z2) u () :
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Sinceuy, is linear on Q; and u is Lipschitz-continuous with constart C, it

follows from (A.19) that

hfun(z) u(2);jr un(2)j) FouCs) u (x)sjr un(xi)i)
P Zh 20 un(x)j+ CL):

Using (A.20) for z = y; and z = x; in (A.18) it follows that

T 2R 2(r unx)i+ Co)
and thus with (A.11)

P— , . .
Tl;i 2 h2(Jr hUi) + CL):

For T, it follows from (A.10) that

Toi = hEo(ui usjr u(xi)j)  Fo(un(xi)  u(xi) ;jr un(xi)i)
P2 hu uni iy u (0
Using the Lipschitz-continuity of u it follows that
T "2 hu  unx)i+ hCy):

With - . . . . .
jui un(Xi)j Ui uR(&)j T+ jun(Xi)  un(s))

hjr nuij + g]f Un(Xi)]
it follows from (A.24) that
Ta D ZR2(r gui+r un()i+ L)
Using (A.11) we nd that
Tu 2 NP(r ui+ CL):
Inserting (A.22) and (A.25) in (A.16) gives

Xin
Feun) h f5u ur u(xi)j)
=t ! !
p— X
2 h]r huij + Np hCL h
=1 | |
o K ! !
2 hjir huij + LoCL h;

i=1

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)
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which proves(A.14).

To prove (A.15) we note that f ¢( ;:) is monotonouslyincreasingon [0; 1 ),
thus with (A.11) we have

FEui usir un()i)  FO(ui Ui nui);
from which (A.15) follows.

As in the examplebefore,from Lemma2.4.5and (A.13) we have an a-priori
boundon % hjr hu(x;)j: We have for h  h; that

X . 1 . 1
r nu(xj)j —Fp(u —(Fmn +") + 2L
i nu(xi)j & n(Un) Co( ) 0

i=1
and thus in (A.14) we can chooseh, > 0, h; h; sud that for ewery
O<h h;

Xh
F °(up) felui  ujr up(xp)j) ™ (A.26)

i=1

From (A.26) it follows that

Xin
F “(upn) foui  up;jr un(xp)j) + ™ (A.27)

i=1

Using (A.15) it follows from (A.27) that for h  h,

Xin
F¢(un) foui upjr up(xi)p + "
i=1
Xh
feU upsjr pug) + " Fh(up) + ™
i=1
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Lemma A.2.2. Let" > 0, jxj- = P jxj2—+ "2

C . P
fo(ija) = Apo ) 2T
2] else
and
Ve g 1 2
fo( i) = g ° :
29 else

Then there existsC > 0 degendingonly on  suchthat for every ;a2 R

jt-(ja)  f5(;a))  Cn

Proof:
We have
jif-Ciiae) 1505 ja)]
|fn( ;Jajn)j?f ( ;jaj--)9+|f ( ;jajv-):Ef ( ;jaj)gi (A.28)

Note that jxj- jxj for x 2 R and thus

P N
iXj- o ixp = gXjE o 2ixjjxje + jxj2

= X2 2xj X+ )2,

A.29
=P BT A
P 2jxj2+ "2 2jxj2="
To estimateterm T, we have to ched three cases:
Ca35£
Let 2 jaj- jj jj- Then
P— o P— .
f-(jja)="27jj feC @)= 27jj
and, sincejaj- > jaj, p__
Ti= 2 (ja- ja): (A.30)
From (A.30) it follows with (A.29) that
T, "z
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Case 2. j
Letjj< 2 jaj- | j-. Then

2

P . -
f-Cija) =" 2jj5  F°Cia) = + g

2jaj

and

We have

P— .
AR

and
2 p

P— . o 2
IETE 21

21 g
From (A.32) using J‘—J‘ 1 and (A.29) (with x = ) it follows that
P P e
] Ziaj- 9 , ] 2JJpZJJ
2Gi iy 2m
From (A.31) and (A.33) we have that

T, Po

(A.33)

Casg 3:
Let 2 jaj»>j j~>jj. Then

jJ? i
o
da T JA TCE) = o

fo( :jajr) = + jap

and
2 + n2 2 np

T =

daj-  Za 2
Sincepz_jaj >jj-andj j- " it followsthat

r—., I —

2 7
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Thus for eah casewe have
T, C" (A.34)

For T, we derive from (a4) with p= 1, usingjaj- > jaj and (A.29) that

P . . P . P
T, 2 jaj ja = 2 (aj ja) 2" (A.35)
Inserting (A.34) and (A.35) in (A.28) we derive

jt-(jajr)  f°(sja)j  C
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