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In tro duction

In image processingmost of the methods for image analysisor feature ex-
traction require satisfactory quality of the imagesunder investigation. In
order to enhancethe quality of images�ltering techniquessuch ashistogram
modi�cations, denoisingor deblurring are performedin a preprocessingstep.

In this thesiswe focuson the problem of denoising,i.e. the removal of noise
in images.See[12] for an overview on denoising.

Among the variety of denoisingtechniques,we want to mention the classof
di�usion �lters such as linear di�usion (or convolution), Perona-Malik di�u-
sion, and anisotropic di�usion, see[12, 14, 54].

We point out that denoisingcan be viewed as an inverse problem. With a
concretenoise model at hand, the processof adding noise to an image I 0

giving a noisy imageI � refers to the forward problem. The inverseproblem
is to reconstruct I 0 from the noisy data I � .
A commonansatzto solve inverseproblemsis by regularization (see[19,35]):
We describe this ansatz in a contin uous setting. Let 
 � R2. The noisy
data are identi�ed with somefunction u� : 
 ! Rd; d 2 N , the noise-free
data with somefunction u0 : 
 ! Rd satisfyingcertain regularity or smooth-
nessproperties.

In order to �nd a good approximation u of u0, taking into account that

� the function u should approximate the noisy data u� and that

� the function u should satisfy the regularity properties of u0,

regularization methods consist in �nding

argmin
u2 X

F � (u; u� ); (1)

where F � (:; :) is somefunctional depending on the noisy data u� and on
a regularization parameter � > 0. Typically X is an appropriate function

xiii



xiv INTR ODUCTION

space.
A relationship betweenthe variational approach and somewell-known dif-

fusion techniques,such as linear or anisotropic di�usion [54], has beendoc-
umented in the literature, see[47].
This relation is establishedby choosingthe functional F � (u; u� ) in a way, that
the corresponding optimalit y condition for the minimizer can be interpreted
as one implicit time step with step size� of the di�usion process.

In the following we comparethe problem of denoisingwith the problem of
parameterestimation, which is in a discrete setting:
Let B~a somerandomvector with probability density p~a dependingon param-
eter~a 2 Rn , and~b1; : : : ;~bN 2 Rm ; N 2 N be realizationsof B~a. The problem
of determining the unknown parameter~a from ~b1; : : : ;~bN then is referred to
as parameter estimation. Commonmethods for parameterestimation are

Maximum likelihood (ML) estimation (seee.g. [42]): determine the vector
~a 2 Rn , such that the conditional probability density p(~b1; : : : ;~bN j~a) is
maximal. ML requiresthe parametermodel to be known.

Maximum a-posteriori (MAP) estimation (seee.g. [34, 53, 31]): given a
sample~b1; : : :~bN , �nd a vector ~a 2 Rn such that the conditional proba-
bility density
p(~aj~b1; : : : ;~bN ) of ~a given~b1; : : : ;~bN is maximal. (The conceptof con-
ditional probability is reviewed in detail in Chapter 1.)

Besidesknowledgeof the parameter model, this ansatz requiresprior
information about the probability of ~a, referredto asprior .

Conditional mean (CM) estimator (seee.g. [31]): Determine the mean of
the conditional probability density p(~aj~b1; : : : ;~bN ).

Note for the problem of denoisingwith only one sample(N = 1) the result
of maximum-likelihood estimation may result in u = u� .

Comparing MAP estimation and regularization we identify the parameter
model with the noise model and we seethat the prior can be interpreted
as a regularity term, see [28] and refer to MAP estimation as statistical
regularization.
Nevertheless,we have to keepin mind that the regularization ansatzis based
on a continuousformulation, whereasthe statistical approach is in a discrete
form.
A detailed comparisonof classicaland statistical regularization in the dis-
crete setting can be found in the book of Kaipio and Somersalo[31]. In the
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review of this book by Engl ([41, pp. 164-167])it hasbeenpointed out that
further developement of the statistical theory for in�nite-dimensional inverse
problemsis desirable.

In order to useBayesianestimation for denoising,we have to

� investigatethe problem of denoisingin a discretesetting,

� de�ning noisemodels,and

� determineappropriate priors.

Setting up a MAP estimator for one of thesenoisemodels together with a
prior then provides a discreteoptimization problem of the form

argmin
u2 RN

F � (~u; ~u� );

One goal of this thesis is to motivate the useof the contin uous functional

F � (u; u� ) :=
Z




(u � u� )2

2jr uj
+ � jr uj; (2)

by statistical considerations. We refer to (2) as the Non-convex-Bounded-
Variation - or NCBV -functional.
Theoretical resultson the existenceof a generalized minimizer of the NCBV-
functional can be found in [27].
In literature several aspects of the NCBV-functional have beeninvestigated
so far:

� In [27] the relationship betweenminimization of the NCBV-functional
and the Mean Curvature Flow is shown numerically.

� In [24] the NCBV-functional is adapted for imagesegmentation.

Future work on the NCBV-functional concernstwo aspects: Firstly, analysis
of the invariancesfor image �ltering, as for example translation, rotation
and scaling invariance, motivates that a set of axioms on invariancesmay
uniquely determine the form of f (� ; A) = � 2

2jA j + � jAj used for the NCBV-
functional.
Secondly, the NCBV-functional may be adapted to vector valued-data, for
examplecolor images. In particular the adaption to vector-valued data will
lead to generalizationsof the Mean Curvature Flow in higher dimensions.
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This thesis is organizedas follows:
In Chapter 1 we recall de�nitions and results from Bayesianstatistics and
describe the generalform of a MAP estimator.
Besidesrecalling the model of additive Gaussiannoisewe introducea model
for the distortion of sampling points and we determine feasiblepriors for
imagedenoising
Using theseas ingredients for the MAP estimator, we end up with di�erent
optimization problemsof the form

argmin
~u2 RN

NX

i =1

f (ui � u�
i ; jr hui j); (3)

for denoisingdata ~u� , with r h being a numerical schemefor the gradient.
We point out that the description of the MAP estimators for denoising is
given in a discretecontext for a proper application of the statistical concepts.

In Chapter 2 the discreteminimization problemsare comparedto the mini-
mization of functionals on the in�nite-dimensional function spacesW 1;p(
)
and BV(
), respectively. In particular we show that the discretefunctionals
are consistent with the continuousones.
Moreover we propose numerical algorithms for MAP estimation basedon
a steepest descent approach for the minimization problem (3) and a �nite
element(FE)-based method, respectively.

To emphasizethe importance of denoisingin practice, we provide an excur-
sion on applications of denoisingin astronomical imaging in Chapter 3. In
particular we describe the statistical conceptsof the denoisingmethods used.

Numerical results of the algorithms proposedin Chapter 2 are presented in
Chapter 4. In particular we compareboth kinds of algorithms with respect
to the quality of �ltering and computational e�ort.



Chapter 1

Statistical Regularization

1.1 Basic Concepts of Statistics

A Bayesianapproach for the statistical inverseproblem of denoisingis based
on a-priori knowledgeabout the statistical distribution of the unknown vari-
ables. We denotethe unkown variablesby u in the following. The distribu-
tion of u is commonly referred to as prior . Knowing the forward problem,
that is how the data, denoted by u� , depend on the unknown variables u,
one searches for the variable u (in generalnot unique) most probably oc-
curring with the given data u� . This processis referred to as the maximum
a-posteriori (MAP) estimator.
To describe the Bayesian ansatz in detail, we need to introduce random
variablesand their probability distributions /densities aswell asconditional
probabilities / probability densities.
We start with the caseof discreteprobability distributions.

Discrete Probabilit y Distributions

Let D; ~D be countable subsetsof RN ; N 2 N and ~u 2 D; ~u� 2 ~D. We assume
that ~u� is somedistortion of ~u. Moreover, we assumethat ~u and ~u� are
realizationsof random vectorsU and U � . PU and PU � are the probability
distributions of U and U � on D and ~D, respectively. Usingthe samenotation
as in [42] we denote P(X 2 A) := PX (A) and P(X = a) := PX (f ag). For
the background on statistics we refer to [17, 34].
The joint probability of both events f U = ~ug and f U � = u� g is de�ned by
(see[42])

P
�
(U ; U � ) = (~u; ~u� )

�
:

Since we assume~u� to be a distortion of ~u, the events are assumedto be

1



2 CHAPTER 1. STATISTICAL REGULARIZA TION

dependent and thus in general

P
�
(U ; U � ) = (~u; ~u� )

�
6= P(U = ~u)P(U � = ~u� ):

Weconsiderthe problemof �nding ~u maximizing the conditional probability
(see[3, 42]) de�ned by

P(U = ~ujU � = ~u� ) :=

(
P (( U ;U � )=( ~u;~u � ))

P (U � = ~u � ) if P(U � = ~u� ) 6= 0;
0 else;

(1.1)

with respect to u. In the discrete setting MAP estimation refers to the
maximization of the conditional probability of U given u� :

argmax
~u2 D

P(U = ~ujU � = ~u� ) = argmax
~u2 D

P(U � = ~u� jU = ~u) P(U = ~u) (1.2)

is referred to as the Maximum a-posteriori (MAP) estimator [55, 53]. In
order to apply the MAP estimator, the conditional probability P(U � jU ) has
to be determined from the model of distortion. Moreover P(U ) has to be
a-priori known. P(U ) is referredto as the prior distribution, or prior in the
literature.

Example 1.1.1. Let U; � be two discrete random variableswith valuesin
I 1 := f 1; 2; 3g and I 2 := f� 3; � 2; : : : ; 3g, respectively. We assumethat the
corresponding probability distributions are de�ned by

P(U = u) =
1
3

and

P(� = � ) =

8
>><

>>:

0:4 if � = 0
0:24 if j� j = 1
0:055 if j� j = 2
0:005 if j� j = 3

:

Let U� = U + � , then

P(U� = u� ) =
X

u2 I 1

X

� 2 I 2 :

u + � = u �

P(U = u) P(� = � ) =

8
>>>><

>>>>:

0:002 if u� = � 2; 6
0:02 if u� = � 1; 5
0:1 if u� = 0; 4;
0:231 if u� = 1; 3
0:293 if u� = 2

(rounded).
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The joint probability P(U = u; U � = u� ) is given by
u�

P(U;U� ) -2 -1 0 1 2 3 4 5 6
u=1 0.002 0.018 0.080 0.133 0.080 0.018 0.002 0.000 0.000
u=2 0.000 0.002 0.018 0.080 0.133 0.080 0.018 0.002 0.000
u=3 0.000 0.000 0.002 0.018 0.080 0.133 0.080 0.080 0.002

and the conditional probability P(U = ujU � = u� ) by

u�

P(UjU� ) -2 -1 0 1 2 3 4 5 6
u=1 1.0 0.917 0.800 0.576 0.273 0.079 0.017 0.000 0.0
u=2 0.0 0.083 0.183 0.345 0.455 0.345 0.183 0.083 0.0
u=3 0.0 0.000 0.017 0.079 0.273 0.576 0.800 0.917 1.0

(Note that thesevalueshave been rounded. We have
P 3

u=1

P 6
u � = � 2 P(U =

u; U� = u� ) = 1 and
P 3

u=1 P(U = ujU� = u� ) = 1 up to round-o� errors.)

For given u� , we can determine from P(U = ujU � = u� ) the most probable
value u 2 f 1; 2; 3g. For examplethe probability P(U = ujU � = u� ) for the
valueof u� = 0 is maximal for u = 1.
Note that P(U = u; U� = u� ) and P(U = ujU� = u� ) di�er by factor

1
P (U � = u � ) , which is constant for �xed u� , thus we haveargmaxu2f 1;2;3g P(U =
ujU� = u� ) = argmaxu2f 1;2;3g P(U = u; U� = u� ). �

Contin uous Probabilit y Distributions

So far we have consideredonly discreteprobability distributions. For abso-
lutely continuous distributions the conceptof MAP estimation is as follows
( see[42, 31]):
Let ~u; ~u� 2 RN . We assumethat the corresponding random vectors U
and (U ; U � ) have absolutely continuous probability distributions P(U ) and
P(U ; U � ). By de�nition there exist probability density functions of P(U )
and P(U ; U � ) (see[42]), which are denoted by pU and pU ;U � , respectively.
The probability density function of PU � satis�es

pU � (~u� ) =
Z

RN

pU ;U � (~u; ~u� )pU (~u) d~u:

In the sameway the conditional probability the conditional densities are
de�ned:
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We cite the following Lemma from [31, Appendix 2] (adapted to our nota-
tion):

Lemma 1.1.2. Assumethat the random variablesU and U � are absolutely
continuous with continuous densitiesand ~u� 2 RN is a vector suchthat

pU � (~u� ) =
Z

RN
pU ;U � (~u; ~u� ) d~u > 0:

Further, let (B (j ) )1� j < 1 be a decreasing nested sequence of intervals in RN

suchthat B (j ) # f ~u� g, i.e. B (j +1) � B (j ) and
T

j B (j ) = f ~u� g . Then the limit

lim
j !1

P(U 2 AjU � 2 B (j )) =: P(U 2 AjU � = f ~u� g)

existsand it can be evaluated as the integral

P(U 2 AjU � = f ~u� g) =
1

pU � (~u� )

Z

A
pU ;U � (~u; ~u� ) d~u:

Lemma 1.1.2motivates to introducethe conditional probability distribution
P(U � 2 AjU � = ~u� ) under the assumption that pU � (~u� ) > 0. In this case
the lemma additionally provides the density of P(U � 2 AjU � = ~u� ). More
generalthe conditional probability density pU jU � (~uj~u� ) of ~u given~u� is de�ned
by

pU jU � (~uj~u� ) :=

(
pU ;U � (~u;~u � )

pU � (~u � ) if pU � (~u� ) 6= 0;

0 else;

seealso [42]. Analogouslywe de�ne pU � jU (~u� j~u).

We have

pU ;U � (~u; ~u� ) = pU jU � (~uj~u� ) pU � (~u� ) = pU � jU (~u� j~u) pU (~u): (1.3)

Assuming pU � (~u� ) > 0 and dividing (1.3) by pU � (~u� ) gives the Theorem of
Bayes(formulated in terms of densities):

pU jU � (~uj~u� ) =
pU � jU (~u� j~u) pU (~u)

pU � (~u� )
: (1.4)

SincepU � (u� ) is constant, the MAP estimator in the caseof absolutely con-
tinuousdistributions is given by

argmax
~u2 RN

pU ;U � (~u; ~u� ) = argmax
~u2 RN

pU � jU (~u� j~u) pU (~u); (1.5)
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seefor example[53, 55, 31].
Sincelog(:) is monotone,the minimization problem

argmin
~u2 RN

� logpU � jU (~u� j~u) � logpU (~u) (1.6)

is equivalent to (1.5).
For simplicity of notation, we omit the indicesU ; U � in pU , pU ;U � and pU � jU

in the following.

1.2 Sampling poin ts on regular grids

In the following sectionswe considersamplingpoints arrangedon an equidis-
tant one-or two-dimensionalgrid.
By h > 0 we denotethe meshsize.
For N; M > 0 let

I := f (i; j )ji = 1; : : : ; N ; j = 1; : : : ; M g:

We considerN � M samplingpoints x i;j 2 R2 given by

x i;j =
�

(i � 1)h
(j � 1)h

�
; (i; j ) 2 I :

The valuessampledat x i;j are denotedby

u = (ui;j )(i;j )2I

and the distorted valuesare denotedby

u � = (u�
i;j )(i;j )2I

In the one-dimensionalcase,we assumeM = 1 and use the abbreviations
x i := x i; 1; ui := ui; 1 and u�

i := u�
i; 1.

Example 1.2.1. Considering a grayscale imageof N � M pixels, x i;j refer
to the pixel locations and ui;j are the pixel intensities. �
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Figure 1.1: Example of an imagewith additive Gaussiannoise.

1.3 Noise Mo dels

Additiv e Gaussian Noise

To begin with, let us recall the model of additive Gaussiannoise (seefor
example[31]). We assumethat noisy data u � are given by

u�
i;j = ui;j + � i;j ; (i; j ) 2 I ; (1.7)

where� i;j are realizationsof independent and identically distributed (i.i.d.)
Gaussianrandomvariables� i;j (see[17]) with zeromeanandvariance� 2; � >
0. The probability density of � i;j is denotedby

p� (� i;j ) :=
�

1

� �

p
2�

�
exp

�
�

� 2
i;j

2� 2
�

�
:

Let � = (� i;j )(i;j )2I .
Since� i;j areindependent, the probability density function of � = (� i;j )(i;j )2I

is given by

p� (� ) :=
Y

(i;j )2I

p� (� i;j ) =
�

1

�
p

2�

� N M Y

(i;j )2I

exp
�

�
� 2

i;j

2� 2

�
: (1.8)

For given u we have U � = u + � and thus

p(u � ju) = p� (u � � u): (1.9)

In other words the probability density of p(u � ju) is just a translation of the
probability density p� , see[31].
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Inserting (1.8) in (1.9) gives

p(u � ju) =
�

1

�
p

2�

� N M Y

(i;j )2I

exp

 

�
(u�

i;j � ui;j )2

2� 2

!

: (1.10)

In Section1.5 we use(1.10) for de�ning a MAP estimator for denoising.

Sampling Poin t Errors

Besidesthe model of additive Gaussiannoisewe considera model with sam-
pling point errors as follows:
Consideringdata collected from a sampling process,we assumean error of
the sampling location:
Let x i;j ; (i; j ) 2 I denotethe samplingpoints, seeSection1.2. Moreover, let
u 2 C2(Rn ) and let

ui;j := u(x i;j ); (i; j ) 2 I

denotethe undistorted data.

For (i; j ) 2 I let � i;j 2 R and ~ni;j := r u(x i;j )
jr u(x i;j )j (We choose ~ni;j = 0, if

r u(x i;j ) = 0).

We assumethat the sampling points x i;j are distorted by a random shift in
direction of ~ni;j , with

x �
i;j := x i;j + � i;j ~ni;j ; (i; j ) 2 I

being the distorted sampling point locations. In the one-dimensionalcase
(n = 1) the shift is sgn(r u(x i )) � � i . For spacedimensionsgreater than 1
(n > 1) the shift is in normal direction to the level setsof u, seeFig. 1.2.

The recordeddata u�
i;j are

~u�
i;j := u(x �

i;j ) = u(x i;j + � i;j ~ni;j ); (i; j ) 2 I : (1.11)

For this model we note that

� For �xed x i;j ; ~u�
i;j ; ui;j there may exists di�erent shifts � i;j providing

~u�
i;j = u(x i;j + � i;j ~ni;j ): (1.12)
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x i,j

Level line

d

xi,j

n i,j

Figure 1.2: Distortion of a sampling point in 2D: the shift is assumedto be
normal to the level line.

For example let n = 1; N = 1 and u(x) = sin(x). For x1 = 0, u1 =
u(x1) = 0 and u� = 0 any shift � = � 1 = s� ; s 2 Z satis�es u(x1 + � ) =
0 = u�

1.

� The model requiresdi�erentiabilit y of u at least in a neighborhood of
each samplingpoint.

We consider di�erent modeling, which is basedonly on discrete data and
which providesuniquenessof the shifts � i;j . The uniquenessof � i;j providesa
basicrelationship betweenthe conditional probability density p(u�

i;j jui;j ) and
the probability density p(� i;j ), see(1.24) and (1.25) below.

Let
r hui;j = r hu(x i;j ); (i; j ) 2 I (1.13)

be some�nite di�erence schemefor approximating r u(x i;j ), satisfying the
following assumption:

Assumption 1.

(a1) Assumethat there exist h0 > 0 and C > 0, suchthat for
every 0 < h � h0 and every v 2 C2(R2)

jr hv(x) � r v(x)j2 � C max
y2 B h (x)

jH v(y)j2h;

where H v is the Hessianof v 2 C2(Rn ) and j:j2 is the
spectral norm.
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Now we assumethat the recordeddata are

u�
i;j := ui;j + � i;j jr hui;j j: (1.14)

We then have

� i;j =
u�

i;j � ui;j

jr hui;j j
: (1.15)

The following Theoremdescribesthe di�erence betweenthe two models:

Theorem 1.3.1. Let r h satisfy the assumption (a1) for h0 > 0.
Let u 2 C2(Rn ), x i;j 2 Rn ; � i;j 2 R for (i; j ) 2 I and d := maxfj � i;j j j (i; j ) 2
I g.

For (i; j ) 2 I we denoteui;j = u(x i;j ), r hui;j = r hu(x i;j ). For u�
i;j ; ~u�

i;j as in
(1.11) and (1.14) we have

j~u�
i;j � u�

i;j j = d O(h) + o(d) (1.16)

Proof:
Using the de�nitions of u�

i;j and ~u�
i;j it follows that

j~u�
i;j � u�

i;j j =
�
�
�u(x i;j + � i;j ~ni;j ) � u(x i;j ) � � i;j jr hu(x i;j )j

�
�
�: (1.17)

Sinceu 2 C2(R2) and j~ni;j j = 1 Taylor-approximation gives

ju(x i;j + � i;j ~ni;j ) � u(x i;j ) � � i;j hr u(x i:j ); ~ni;j ij � Cd2: (1.18)

with C > 0 depending on maxx2 B d (x i;j ) H u(x).

Combining (1.17) and (1.18) and using that

hr u(x i;j ); ~ni;j i = hr u(x i;j );
r u(x i;j )

jr u(x i;j )j
i = jr u(x i;j )j;

gives
ju�

i;j � ~u�
i;j j �

�
�
� � i;j jr u(x i;j )j � � i;j jr hu(x i;j )j

�
�
� + o(d)

� d
�
�
� jr u(x i;j )j � jr hu(x i;j )j

�
�
� + o(d)

� d
�
�
�r u(x i;j ) � r hu(x i;j )

�
�
� + o(d):

(1.19)

With
M = max

(i;j )2I
max

x2 B h 0 (x i;j )
jH u(x)j2
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it follows from assumption (a1) and (1.19) that

ju�
i;j � ~u�

i;j j � C M dh + o(d):

This shows the assertion.

Theorem 1.3.1 shows that the data u�
i;j given by model (1.14) for small

h; d = max f � i;j j (i; j ) 2 I g approximate the data ~u�
i;j of model (1.11).

Figure 1.3: Example of an imagewith samplingpoint errors.

Let us give an 2D-examplefor a numerical schemer h:

Example 1.3.2. Let h > 0 and u 2 C2(R2). We de�ne

r hu(x i;j ) :=

 
u(x i +1 ;j )� u(x i;j )

h
u(x i;j +1 )� u(x i;j )

h

!

; (i; j ) 2 I : (1.20)

Let H u be the Hessianof u and

~M (x i;j ) := max
x2 B h (x i;j )

jH u(x)j2:

For �xed x, Taylor-approximation gives
�
�
�
�
u(x i +1 ;j � u(x i;j )

h
� @xu(x i;j )

�
�
�
� � ~M (x i;j ) h;

�
�
�
�
u(x i;j +1 � u(x i;j )

h
� @yu(x i;j )

�
�
�
� � ~M (x i;j ) h;

(1.21)



1.3. NOISE MODELS 11

and thus
jr u(x i;j ) � r hu(x i;j )j �

p
2 ~M (x i;j )h: (1.22)

�

We investigatethe noisemodel (1.14) in the context of statistics:
We assumethat ui;j ; jr hui;j j; (i; j ) 2 I are realizationsof random variables
U = (Ui;j )(i;j )2I and V = (Vi;j )(i;j )2I .
Moreover, let (� i;j )(i;j )2I be realizations of i.i.d. Gaussianrandom variables
� i;j with zeromeanand variance� 2

� ; � � > 0.
The probability density of � i;j then is

p� (� i;j ) :=
�

1

� �

p
2�

�
exp

�
�

� 2
i;j

2� 2
�

�
:

The random variable U � = (U�
i;j )(i;j )2I is given by

U�
i;j = Ui;j + � i;j Vi;j ;

wherethe distorted data are realizationsof U � .
Note that for �xed ui;j and jr hui;j j we have

U�
i;j = ui;j + � i;j jr hui;j j: (1.23)

Let v := (r hui;j )(i;j )2I . From the results in [31, Section 3.2.2], since the
shifts � i;j are i.i.d. and independent from u; v , it follows that the conditional
probability density p(u � ju; v) is given by

p(u � ju; v) =
Y

(i;j )2I

Z

R
� (u�

i;j � ui;j � jr hui;j j s) p� (s) ds; (1.24)

where� (:) denotesthe Dirac distribution.
Sinceu�

i;j � ui;j � jr hui;j j s = 0 uniquely determiness, (1.24) simpli�es to

p(u � ju; v) =
Y

(i;j )2I

p(u�
i;j jui;j ; r hui;j )

=
�

1

� �

p
2�

� N M Y

(i;j )2I

exp

 

�
(ui;j � u�

i;j )2

2� � jr hui;j j2

!

:
(1.25)

For the following we assumethat v = (r hui;j )(i;j )2I are determined by u.
For exampleassumethat the values ui ; i = 1; : : : ; N; are given on a one-
dimensional equidistant grid with mesh size h, then using the numerical
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scheme r hui := u i +1 � u i

h ; i = 1; : : : N � 1; and r huN := uN � uN � 1

h , respec-
tively, the values(r hui )N

i=1 depend on (ui )N
i=1 .

With this assumptionwe have

p(u � ju; v) = p(u � ju):

and

p(u � ju) =
�

1

� �

p
2�

� N M Y

(i;j )2I

exp

 

�
(ui;j � u�

i;j )2

2� 2
� jr hui;j j2

!

: (1.26)

Let us extend the model of sampling point errors by assumingadditional
Gaussiannoisein the sampledvalues:
Let � i;j ; (i; j ) 2 I be realizationsof i.i.d. Gaussianrandom variablesEi;j with
zeromeanand variance� 2

� ; � � > 0.

Figure 1.4: Example of an image with sampling point errors and additive
Gaussiannoise.

The probability density of Ei;j is denotedby

p� (� i;j ) :=
�

1

� �

p
2�

�
exp

�
�

� 2
i;j

2� 2
�

�
:

The sampleddata are assumedto be

u�
i;j := ui;j + � i;j � jr hui;j j + � i;j : (1.27)
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Equivalently we have

u�
i;j � ui;j = jr hui;j j� i;j + � i;j : (1.28)

By taking the squareon both sideswe get

(u�
i;j � ui;j )2 = � 2

i;j jr hui;j j2 + 2jr hui;j j � i;j � i;j + � 2
i;j

= 2jr hui;j j � i;j � i;j + O(� 2
i;j + � 2

i;j )

and thus

� i;j � i;j �
(u�

i;j � ui;j )2

2jr hui;j j
: (1.29)

Eq. (1.29) motivates to consider the product of the random variables Ei;j

and � i;j .
Denoting the product probability density of Ei;j � i;j by p� � it follows that

p(u�
i;j jui;j ) � p� � (� i;j � i;j ) (1.30)

An approximation of the product probability density p� � is derivedasfollows:
We have

p� � (� i;j � i;j ) =
Z

s2 R
p� (s)p�

�
� i;j � i;j

s

�
ds

/
Z 1

�1
exp(�

s2

2� 2
�

) exp
�

�
(� i;j � i;j )2

2� 2
� s2

�
ds

=
Z 1

�1
exp

 

�
� 2

� s2 + � 2
�

(� i;j � i;j )2

s2

2� 2
� � 2

�

!

ds;

(1.31)

wherea / b denotesthat a is proportional to b.
With the function

g(a;s) :=

�
� � s � � �

j � i;j � i;j j
s

� 2

2� 2
� � 2

�

it follows that

� 2
� s2 + � 2

�
(� i;j � i;j )2

s2

2� 2
� � 2

�
=

j� i;j � i;j j
� � � �

+
� 2

� s2 � 2� � � � j� i;j � i;j j + � 2
�

(� i;j � i;j )2

s2

2� 2
� � 2

�

=
j� i;j � i;j j

� � � �
+

�
� � s � � �

j � i;j � i;j j
s

� 2

2� 2
� � 2

�

=
j� i;j � i;j j

� � � �
+ g(j� i;j � i;j j; s)

(1.32)
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Figure 1.5: Function exp(� g(a;s)) with � � = � � = 1 plotted for a = 0 and
a = 1, respectively. Integration

R1
�1 exp(� g(a;s)) ds givesG(a) as usedfor

approximation of pEi;j � i;j .

Let G(a) =
R1

�1 exp(� g(a;s)) ds, seeFig. 1.5.
Inserting (1.32) in (1.31) gives

p� � (� i;j � i;j ) /
Z 1

�1
exp

�
�

j� i;j � i;j j
� � � �

� g(j� i;j � i;j j; s)
�

ds

= exp
�

�
j� i;j � i;j j

� � � �

� Z

s2 R
exp(� g(j� i;j � i;j j; s) ds

= exp
�

�
j� i;j � i;j j

� � � �

�
G(j� i;j � i;j j):

Note that for G we have

jG(a)j < 1 ; jG0(0)j < 1 ; (1.33)

seeLemma A.1.1 in Appendix A.1. We approximate G(a) by G(0) + O(jaj)

and derive with � :=
q

� � � �

2 that

p� � (� i;j � i;j ) / G(0) exp
�

�
j� i;j � i;j j

� � � �

�
+ O(j� i;j � i;j j)

/ exp
�

�
j� i;j � i;j j

2� 2

�
+ O(j� i;j � i;j j):

(1.34)

Inserting (1.34) in (1.30) and normalizing the probability density gives

p(u�
i;j jui;j ) �

1

�
p

2�
exp

 

�
(ui;j � u�

i;j )2

2� 2jr hui;j j

!
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and thus

p(u � ju) �
�

1

�
p

2�

� N M Y

(i;j )2I

exp

 

�
(ui;j � u�

i;j )2

2� 2jr hui;j j

!

: (1.35)

1.4 Priors for Gra yscale Images

In the remainder of this chapter, we considerdenoisingof grayscaleimages
with statistical methodsand show an equivalencerelation with regularization
models.

We consideran imageof N � M pixels and imageintensitiesu = (ui;j )(i;j )2I ,
which are assumedto be integersin the range[0; 256).

The goal of this section is to determineprior distributions (seeSection1.1)
for images. For applying the MAP estimator (1.6) the density p(u) of prior
distribution has to be known a-priori. Moreover the result of MAP estima-
tion qualitativ ely dependson the chosenprior.

For illustration we use two test imagesshown in Fig. 1.6. The �rst one
is a digital photo and the secondis an imagegeneratedby convolution of a
piecewiseconstant function with a Gaussiankernel. We refer to theseimages
as the \mountain" imageand \cards" image,respectively.

Figure 1.6: Two test images\mountain" and \cards".

From theseimageswe producedistorted imageswith additive Gaussiannoise
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and samplingpoints errors.
Sincethe data after addingGaussiannoiseoccasionallytakevaluesoutsideof
[0; 255],the data is projected to integer valuesbetween0 and 255for storing
the image. In the processof distorting the sampling points we associate
shifted samplingpoints outside the imagedomain with zero intensity.
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Figure 1.7: Histogram of the intensitiesui;j of the \mountain" imageand the
imagedistorted with Gaussiannoise.
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Figure 1.8: Histogram of the intensities ui;j of the \cards" image and the
imagedistorted with Gaussiannoiseintensity errors.

Let us assumethat the image intensities are realization of the following
Markov random �eld (MRF) (see[55, 31]): For each (i; j ) 2 I we denote
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the set of indicesof the eight pixels adjacent to x i;j (neighborhood) by N bi;j

and the family of neighborhood setsby

N b = f N bi;j j(i; j ) 2 I g:

Let us assumethat the imageintensitiesarerealizationsof a Markov random
�eld with respect to the systemN b, i.e. the conditional probability distribu-
tion of Ui;j given all other intensity valuesdependsonly on the valuesin the
neighborhood of (i; j ):

p(ui;j jf uk;l jk 6= i; l 6= j g) = p(ui;j jf uk;l ; (k; l) 2 N bi;j g):

Then the Theoremof Hammersley-Cli�ord (see[55,31]) statesthat the prob-
abilit y density of U has the form

p(~u) / exp

0

@�
X

(i;j )2I

Vi;j (u)

1

A ;

whereVi;j (u) dependsonly on ui;j and uk;l ; (k; l) 2 N bi;j .

One possibleform of Vi;j (u) is, that it depends only on ui;j , i.e. the prior
is basedon the histograms of the images. Several priors of this form are
introducedin [31].
Investigating the histogramsof the above images,we observe the following:

� When adding Gaussian noise to an image, the histogram becomes
smoother, seeFigs. 1.7 and 1.8. Since noisy data are projected to
[0; 255], an increaseof the number of pixels values 0 and 255 is ob-
served in the histogram.

� For the test imageswith samplingpoint errorswe note that associating
shifted sampling points lying outside the image domain with zero in-
tensity leadsto an increaseof the number of pixels with zero intensity
(black pixels). Besidean increaseof additional black pixels, we observe
that the histogram is only slightly a�ected by the distortion. (For this
reasonwe omit the corresponding histograms.)

We note that the histograms depend on the image content. Moreover in
the histogramsthere is hardly an e�ect of the distortion of samplingpoints.
Consequently, a prior de�ned basedon a presumedintensity distribution is
not suitable to distinguish betweendistorted and undistorted data.
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Instead of the distribution of intensities, let us investigatethe distribution of
the di�erences betweenthe intensitiesof adjacent pixels, i.e. Vi;j (~u) depends
on ui;j � uk;l ; (k; l) 2 N bi;j . In this section we only consider 'right-sided'
di�erences, i.e. ui +1 ;j � ui;j and ui;j +1 � ui;j .
For i = 1; : : : ; N � 1; j = 1; : : : ; M � 1 we de�ne

vi;j :=
�

ui +1 ;j � ui;j

ui;j +1 � ui;j

�
; (1.36)

thus vi;j is de�ned for each image pixel except for the bottom row and the
right column of the image. Let

I � := f (i; j ) j i = 1; : : : ; N � 1; j = 1; : : : ; M � 1g:

Let us investigatethe (empirical) distribution of the samplejvi;j j; (i; j ) 2 I �

from the above test images. We denote the empirical distribution of jvi;j j
by P(jvj). We determine P(jvj) by dividing up the interval [0; 256) into K
congruent subintervals

I k =
�

256(k � 1)
K

;
256k
K

�
; k = 1; : : : ; K ;

counting the occurrences

ck := # fj vi;j j 2 I k ; (i; j ) 2 I � g: (1.37)

and scaling each ck by factor 1P K
k =1 ck j I k j

, thus the empirical distribution of

jvi;j j is given by
P(jvj 2 I k) = ck jI k j; k = 1; : : : K :

Fig. 1.9 and Fig. 1.10 show the histogramsof jvi;j j for the \mountain" and
\cards" image, respectively. For the readersconveniencewe only plot the
rangewherethe ck are positive.
We comparethe distributions of jvi;j j for the distorted and the original test
images,seeFig. 1.11and 1.12.
We observe that for the original imagesthe values of jvi;j j are both con-
centrated at zero. Large intensity di�erences between adjacent pixel occur
rarely. For the data distorted with Gaussiannoisejvi;j j show a wider spread-
ing comparedto the noise-freedata for both the \cards" and the \mountain"
image.
For data with shifted sampling points, we seea signi�cant di�erence in the
distribution of jvi;j j for the \mountain" image. For the \cards" imageshift-
ing the sampling points is only observable at the edgesin the images,but
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Figure 1.9: Distribution of jvi;j j derived from the \mountain" image and
�tted Gaussianand Laplacian distributions.

not in the homogeneousregions. Since the \cards" image contains only a
few edges,the e�ect of the samplingpoint errors on the histogram is weaker
than for the \mountain" image.
The above results motivate to de�ne a prior for imagesbasedon the proba-
bilit y distribution P(jvi;j j):

We look for a probability distribution with density function ~p(jvj) with sup-
port in [0; 1 ), such that

~P(k) :=
Z

I k

~p(x) dx; k 2 N0

approximates the distribution of jvi;j j. By using the one-point quadrature
rule to approximate

Z

I k

~p(x) dx � ~p
�

256(k � 0:5)
K

�
;

we thereforemay directly �t a probability density function ~p(x) to the scaled
data.

Since the empirical distribution is large for small jvi;j j and decreasesfor
intervals of larger intensities, we approximate the distribution of ck ; k =
1; : : : ; K using density functions of the form

~p(x) =

(
0 if x < 0

cq exp(� jx jq

a ) if x � 0
;
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Figure 1.10: Distribution of jvi;j j derived from the \cards" imageand �tted
Gaussianand Laplacian distributions.

with suitable parametersa;q 2 R+ and cq := 1R1
0 exp(� j x j q

a ) dx
.

In this thesis we concentrate on q = 1 and q = 2 only (using a := ~� prior for
q = 1 and a := 2~� 2

prior ).

We refer to the corresponding distributions asthe Laplacian-like (q = 1) and
Gaussian-like (q = 2) distribution.

We determinea and q 2 f 1; 2g, such that the sum of squarederrors between
data and theoretical probability density ~p(jvj) is minimal.
In Fig. 1.9 and Fig. 1.10we addedthe graphsof the optimal ~p(jvj) for q = 1
and q = 2.

Table 1.1 shows the sum of squarederrors between the empirical data and
the Laplaceand Gaussiandistribution, respectively, for the \mountain" and
the \cards" image. We observe that the Laplaciandistribution approximates
the data with smaller sum of squarederrors than the Gaussiandistribution.

We useboth kinds of distributions, with q = 1 and q = 2, to derive an image
prior p(u):
In the caseof a Gaussian-like distribution we set

~p(jvi;j j) / exp
�

�
jvi;j j2

2~� 2
prior

�
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Figure 1.11: Distribution of jvi;j j from the \mountain" imagewithout distor-
tion, with Gaussiannoiseand with sampling point errors.

Test image SSEGauss SSELapl ace

\mountain" 3:13� 10� 3 2:61� 10� 3

\cards" 10:25� 10� 3 1:14� 10� 3

Table 1.1: Sum of squarederrors betweenempirical data and Gaussianand
Laplacian distribution, respectively.

and therefore

p(u) =
Y

(i;j )2I �

~p(vi;j ) = cexp

0

@�
1

2~� 2
prior

X

(i;j )2I �

jvi;j j2

1

A ; (1.38)

and in the caseof a Laplacian distribution we set

~p(jvi;j j) / exp
�

�
jvi;j j
~� prior

�

and thus

p(u) =
Y

(i;j )2I �

~p(vi;j ) = cexp

0

@�
1

~� prior

X

(i;j )2I �

jvi;j j

1

A ; (1.39)

respectively. Here c is an appropriately chosenconstant.
We refer to the two priors (1.38) and (1.39) as the Gaussianand Laplacian
prior. (In [31] this prior is referredto as the total variation (TV) prior ).
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Figure 1.12: Distribution of jvi;j j from the \cards" imagewithout distortion,
with Gaussiannoiseand with samplingpoint errors.

Remark 1.4.1. Let v := (vx ; vy) 2 R2 be a realization of a two-dimensional
Gaussianor Laplacian distributed random variable with probability density
function

p(v) / exp
�

�
((vx )2 + (vy)2)

q
2

~� prior

�
; (1.40)

where ~� prior > 0, q 2 f 1; 2g. We have

~p(jvj) /
Z

s= jvj
exp

�
�

jsjq

~� prior

�
ds:

Since ~p(jvj) is radial-symmetric, it follows

~p(jvj) / 2� jvj exp
�

�
jvjq

~� prior

�
: (1.41)

Note that for q = 2 ~p(jvj) is a Rayleighdistribution.

Let us compare the theoretical distribution ~p(jvj) in (1.41), see Fig. 1.13 with
Figs. 1.9 and 1.10.
We observethe empirical distribution of jvi;j j for the \cards" image attains
its maximum at c0, i.e. the valuesof jvi;j j concentrate near jvi;j j = 0.
For the \mountain" image the maximum of ck ; k = 1; : : : ; K is found at c1,
i.e. the gradients do not concentrate at 0.We think that this is due to the
texture contained in the image.
Since also ~p(jvj) in (1.41) attains its maximum at x > 0, and the shapes of
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~� prior = 1, c =
� R1

0 jsj exp(� jsjq

~� prior
) ds

� � 1
for q = 1 and q = 2.

both distributions (see Figs. 1.9 and 1.13) look similar, we may approximate
the empirical distribution by �tting ~p(jvj) to the data.

This ansatzprovidesan alternative prior for images:
Setting p(u) :=

Q
(i;j )2I �

~p(jvi;j j) we have

p(u) /
Y

(i;j )2I �

jvi;j j exp
�

�
jvi;j jq

~� prior

�
(1.42)

with q = 1; 2 and someconstant term c > 0. We refer to this as the log-prior
in the following.

Note that the choice of the prior has a strong impact on the result of the
MAP-estimation: Compared to the Gaussian prior (1.38) and Laplacian
prior(1.39) the log-prior (1.42) shows up a signi�cant di�erence: Due to the
speci�c form of ~p(jvj), we implicitly assumethat the gradients do not con-
centrate at zero, whereaswith the priors (1.38) and (1.39) small gradients
are more likely to occur. Thereforewe expect a signi�cant di�erence in the
results when using prior (1.42) instead of the Laplacian and Gaussianprior.
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1.5 MAP Estimators for Gra yscale Images

The image priors introduced in Section 1.4 are basedon the di�erences of
the intensities of adjacent pixels. Thinking of an image as a bilinear inter-
polation u of the data u an a equidistant grid of meshsizeh and choosinga
speci�c numerical schemer hui;j , we can expressjvi;j j as hr hui;j .

To be precise,let r hui;j ; (i; j ) 2 I be de�ned by

r hui;j =

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

0

B
@

ui +1 ;j � ui;j

ui;j +1 � ui;j

1

C
A if (i; j ) 2 I � ;

0

B
@

ui +1 ;j � ui;j

ui;j � ui;j � 1

1

C
A for i = 1; : : : ; N � 1; j = M ;

0

B
@

ui;j � ui � 1;j

ui;j +1 � ui;j

1

C
A for i = N ; j = 1; : : : ; M � 1;

0

B
@

ui;j � ui � 1;j

ui;j � ui;j � 1

1

C
A if i = N ; j = M :

(1.43)

Obviously r hui;j de�ned by (1.43) satis�es assumption (a1) . Moreover we
have hr hui;j := vi;j for (i; j ) 2 I � .

Replacingvi;j by hr hui;j in (1.38), (1.39) and (1.42) we derive with � prior :=
~� prior

h in the caseof a Gaussian-like distribution that

p(u) = cexp

0

@�
1

2� 2
prior

X

(i;j )2I �

jr hui;j j2

1

A ; (1.44)

in the caseof a Laplacian-like distribution that

p(u) = cexp

0

@�
1

� prior

X

(i;j )2I �

jr hui;j j

1

A ; (1.45)

and for a distribution as motivated in Remark 1.4.1 with � prior = ~� prior

hq and
adjusting constant c that

p(u) = c
Y

(i;j )2I �

jr hui;j j exp
�

�
jr hui;j jq

� prior

�
; (1.46)
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respectively. Note that by rescalingof the variance~� prior by factor 1
hq the p(u)

now dependson the meshsizeh. As a consequence,the MAP estimatorsde-
rived with these priors are invariant under changeof the image resolution
only with appropriate rescalingof the parameters.

For the sake of notation we extend the sum over (i; j ) 2 I � to a sum over
(i; j ) 2 I . Note that we have

�
�
�
�
�
�

X

(i;j )2I

r hui;j �
X

(i;j )2I �

r hui;j

�
�
�
�
�
�

! 0

for N; M ! 1 , if the gradients jr hui;j j are uniformly bounded.
Thus we make an approximation of O(h) when replacingp(u) by

p(u) = cexp

0

@�
1

2� 2
prior

X

(i;j )2I

jr hui j2

1

A ; (1.47)

in the caseof a Gaussian-like distribution,

p(u) = cexp

0

@�
1

� prior

X

(i;j )2I

jr hui;j j

1

A ; (1.48)

in the caseof a Laplacian distribution and

p(u) = c
Y

(i;j )2I

jr hui;j j exp
�

�
jr hui;j j

� prior

�
; (1.49)

in caseof a distribution of the form (1.41), respectively.

Let us now set up MAP-estimators for denoising. We combine the noise
models (1.7), (1.14) and (1.28) with the image priors derived above. We
concentrate on the following MAP estimators:

Gaussian noise

Let (u�
i;j )(i;j )2I be as in (1.7).

From (1.10) it follows that

� logp(u � ju) =
X

(i;j )2I

(ui;j � u�
i;j )2

2� 2
� log

�
1

�
p

2�

� N M

: (1.50)
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Choosingprior (1.47) we have

� logp(u) =

0

@ 1
2� 2

prior

X

(i;j )2I

jr hui;j j2

1

A � logc: (1.51)

Inserting (1.50) and (1.51) in (1.6) we derive with � := � 2

� 2
prior

> 0

argmin
u2 RN � M

X

(i;j )2I

�
(ui;j � u�

i;j )2 + � jr hui;j j2
�

� logc � log
�

1

�
p

2�

� N M

: (1.52)

Since � logc � log
�

1
�

p
2�

� N M
is constant, the minimization problem

(1.52) is equivalent to

argmin
u2 RN � M

X

(i;j )2I

�
(ui;j � u�

i;j )2 + � jr hui;j j2
�

: (1.53)

Sampling poin t errors

Let (u�
i;j )(i;j )2I be as in (1.14).

From (1.26) it follows that

� logp(u � ju) =
X

(i;j )2I

(ui;j � u�
i;j )2

2� 2
� jr hui;j j2

� log
�

1

� �

p
2�

� N M

: (1.54)

As for the example of Gaussiannoise we use prior (1.47). Inserting
(1.51) and (1.54) in (1.6) results in the problem of determining

argmin
u2 RN � M

0

@
X

(i;j )2I

(ui;j � u�
i;j )2

2jr hui;j j2
+ � jr hui;j j2

1

A

� logc � log
�

1

� �

p
2�

� N M

; (1.55)

with � = � 2
�

2� 2
prior

> 0, or equivalently
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argmin
u2 RN � M

0

@
X

(i;j )2I

(ui;j � u�
i;j )2

2jr hui;j j2
+ � jr hui;j j2

1

A : (1.56)

Sampling poin t errors with additional Gaussian noise

Let (u�
i;j )(i;j )2I be as in (1.28). We use the conditional probability

density function determinedin (1.35). It follows that

� logp(u � ju) =
X

(i;j )2I

(ui;j � u�
i;j )2

2� 2jr hui;j j
� log

�
1

�
p

2�

� N M

: (1.57)

Using prior (1.48) we have that

� logp(u) =

0

@ 1
� prior

X

(i;j )2I

jr hui;j j

1

A � logc: (1.58)

Inserting (1.57) and (1.58) in (1.6) we derive

argmin
u2 RN � M

X

(i;j )2I

 
(ui;j � u�

i;j )2

2jr hui;j j
+ � jr hui;j j

!

� logc � log
�

1

�
p

2�

� N M

;

(1.59)
with � := � 2

� prior
> 0.

Omitting the constant term � logc� log
�

1
�

p
2�

� N M
in (1.59) we derive

the equivalent optimization problem

argmin
u2 RN � M

X

(i;j )2I

 
(ui;j � u�

i;j )2

2jr hui;j j
+ � jr hui;j j

!

: (1.60)

Sampling poin t errors with log-prior

Again we assumedata with samplingpoint errorsand additional Gaus-
sian noise. Let (u�

i;j )(i;j )2I be as in (1.28).

We use� logp(u � ju) as in (1.57) and the log-prior (1.49) with q = 1,
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which gives

� logp(u) =

0

@ 1
� prior

X

(i;j )2I

jr hui;j j

1

A

� log
X

(i;j )2I

jr hui;j j � logc: (1.61)

Inserting (1.57) and (1.61) in (1.6) and omitting the constant � logc�

log
�

1
�

p
2�

� N M
, we derive

argmin
u2 RN � M

X

(i;j )2I

 
(ui;j � u�

i;j )2

2jr hui;j j
+ � jr hui;j j � � logjr hui;j j

!

(1.62)

with � := � 2

� prior
> 0 and � := � 2.

Yet we consideredonly four of the possiblecombinations of the three noise
models(1.7), (1.14)and (1.28)and the four priors (1.45), (1.44)and (1.41) to
derive a MAP estimator. Table 1.2 lists the di�erent forms for f (u � u� ; r u)
for all twelve MAP estimators.

All theseMAP estimators (see(1.6)) are of the form

argmin
u2 RN � M

F h(u) := argmin
u2 RN � M

X

(i;j )2I

f (ui;j � u�
i;j ; jr hui;j j):

where f (� ; a) : R � R ! R [ f + 1g . We observe the following relation
betweenMAP estimators and regularization: Speaking in terms of regular-
ization theory, function f (� ; A) consistsof a \�t-to-data" term

X

(i;j )2I

(ui;j � u�
i;j )2; or

X

(i;j )2I

(ui;j � u�
i;j )2

2jr hui;j jp
;

with p = 1; 2 and a regularization term

�
X

(i;j 2I

jr hui;j jq; or �

0

@
X

(i;j )2I

jr hui;j jq

1

A � �

0

@
X

(i;j )2I

logjr hui;j j

1

A

with q = 1; 2 and regularization parameters� ; � > 0.
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f (ui;j � u�
i;j ; jr hui;j j) Gaussianprior Laplacian prior

Gaussiannoise jui;j � u�
i;j j2 + � jr hui;j j2 jui;j � u�

i;j j2 + � jr hui;j j

sampling point errors
ju i;j � u �

i;j j2

2jr h u i;j j2 + � jr hui;j j2
ju i;j � u �

i;j j2

2jr h u i;j j2 + � jr hui;j j

s.p.e. plus Gaussiannoise
ju i;j � u �

i;j j2

2jr h u i;j j + � jr hui;j j2
ju i;j � u �

i;j j2

2jr h u i;j j + � jr hui;j j

f (ui;j � u�
i;j ; jr hui;j j) log - prior, (q = 1; 2)

Gaussiannoise jui;j � u�
i;j j2 + � jr hui;j jq � � logjr hui;j j

sampling point errors
ju i;j � u �

i;j j2

2jr h u i;j j2 + � jr hui;j jq � � logjr hui;j j

s.p.e. plus Gaussiannoise
ju i;j � u �

i;j j2

2jr h u i;j j + � jr hui;j jq � � logjr hui;j j

Table 1.2: Using one of the conditional probability densities (1.10),
(1.26) and (1.35) together with one of the priors (1.47), (1.48) and
(1.49) in (1.6), we derive twelve di�erent MAP estimators of the form
argminu2 RN � M

P
(i;j )2I f (ui;j � u�

i;j ; jr hui;j j), where f (� ; a) : R � R ! R [
f + 1g .
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Chapter 2

Numerics

Let us give a short overview of the contents of this Chapter:

In Chapter 1 we have consideredthe minimization of discretefunctionals of
the form

P
(i;j )2I f (ui;j � u�

i;j ; jr ui;j j) for data u � givenon an equidistant grid
with meshsizeh = h0 > 0 asde�ned in 1.2.
We slightly modify thesefunctionals by multiplying f (� ; a) with hn . Let

F h(u) := hn
X

(i;j )2I

f (ui;j � u�
i;j ; jr hui;j j); (2.1)

wheref (� ; a) is oneof the functions introducedin Chapter 1.
We compare(2.1) with the continuous functional on W 1;p(
) given by

F (u) =
Z



f (u � u� ; jr uj):

In particular we are interestedin

F (u) =
Z




(u � u� )2

2jr ujp
+ � jr ujp; p = 1; 2: (2.2)

Theoretical results (seeSection 2.2) motivate to investigate the convexi�ed
functional

F c(u) =
Z



f c(u � u� ; jr uj); (2.3)

instead of F (u), where f c(� ; a) is the convex envelope (see[16]) of f (� ; a)
with respect to a.

One can show that each minimizing sequenceof F c(u) has a subsequence
converging to someu 2 BV(
) (p = 1) or u 2 W 1;2(
) (p = 2), where

31
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BV(
) is the spaceof functions on 
 with boundedvariation, see[20].
Thuswerefer to (2.2) asthe Non-Convex-Bounded-Variation (NCBV)-funct-
ional in the casep = 1 and as the Non-Convex-Hilbert-space (NCH)- funct-
ional in the casep = 2.

Corresponding to (2.3) we considerthe discretefunctional

F c
h(u) = hn

X

(i;j )2I

f c(ui;j � u�
i;j ; jr hui;j j)

and show that undersu�cien t conditionson f c(� ; a) and on jr h:j the discrete
functional F c

h(u) is consistent with F c(u) in the following sense:
We considera re�nement of the grid with (Nh � 1) � (M h � 1) grid cellsof
size0 < h � h0, where h0 denotesthe meshsizeof the grid we start with.
The index set of the grid nodesis denotedby

I h := f (i; j )ji = 1; : : : ; Nh; j = 1; : : : ; M hg:

The data u � are interpolated on the �ner grids.
For

uh := argmin
v 2 RN h � M h

F h(v);

we show that

lim
h! 0

F c
h(uh ) ! F min := inf

v2 W 1;p (
)
F c(v):

Let us give a short sketch, how the consistencyis shown (The theory is pro-
vided in detail in Section2.3):

Assuminga local Lipschitz-continuity on f c(� ; a), weprove that F c(u) is con-
tinuous on W 1;p(
) and F c

h(u) is continuous on RNh � M h , seeLemma 2.3.2
below.

Continuity of F c
h(u) and a coercivity condition on f c(� ; a) assertthat a min-

imizer of F c
h(u) for �xed h exists, seeLemma 2.3.3.

Consistencyfollows by showing

(1) lim sup
h! 0

F c
h(uh) � F min (seeTheorem2.3.4)

(2) lim inf
h! 0

F c
h(uh) � F min (seeProof of Theorem2.3.5):
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To prove(1) weconsideran element uk0 of a minimizing sequenceuk of F c(u),
such that F c(uk0 ) � F min + "

2 . We approximate uk0 by a smooth function ~u
and set ~ui;j = ~u(x i;j ); (i; j ) 2 I h. Let ~uh := (~ui;j )(i;j )2I h . We show that for
every " > 0 there exists h1 > 0 such that for 0 < h < h1

j F c
h(~u) � F c(uk0 )j �

"
2

and thus
F c

h(~u) � F min + ": (2.4)

From (2.4) it follows that for 0 < h � h1

F c
h(uh) = min

u2 RN h � M h
F c

h(u) � F c
h(~u) � F min + ":

For proof of (2) we considerinterpolations uh 2 W 1;p(
) of uh. We require
an additional assumption on the interpolation: We assumethat for every
" > 0 there exists h2 > 0 such that for every 0 < h � h2 we have

F c(uh) � F c
h(uh) + "; (2.5)

from which (2) follows (seethe proof of Theorem2.3.5).

Moreover, we show that a sequence(uh)h satisfying the above assumptionis
a minimizing sequenceof F c(u), seeCorollary 2.3.6.

It remainsto show that sequences(uh)h satisfying (2.5) exist. We construct
such sequencesfor the NCBV- and NCH- functional for speci�c numerical
schemesjr h:j in Section2.4.

In Section2.5we describe two implementations for minimizing the (discrete)
NCBV-functional.
The �rst one is basedon a steepest descent on F c

h(u). Sincef c(� ; a) is not
di�erentiable, we approximate f c(� ; a) by a di�erentiable function f " (� ; a).
The secondimplementation is a FE-method solving the optimalit y condition
of

argmin
u2 W 1;p (
)

F c(u)

numerically.
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2.1 Grid Re�nemen t

Let h0 > 0. We assumethat 
 � Rn is of the form


 =

(
(0; h0 � (N � 1)); for n = 1;

(0; h0 � (N � 1)) � (0; h0 � (M � 1)) for n = 2;

whereh0 > 0 and N; M 2 N, seeSection1.2.
We de�ne L x := h0(N � 1), L y := h0(M � 1).

The above assumption on 
 allows to consider an equidistant grid with
quadratic cellsof sizeh0 and grid nodes(x0

i;j )(i;j )2I 2 
 as in Section1.2.

Moreover let u� 2 W 1;1 (
). Then by Theorem A6.12 in [1], u� can be con-
tinued for given " > 0 to a W 1;1 - function (also denotedby u� ) on B " (
).
By Theorem 5, Chapter 4 in [20] u� j 
 is Lipschitz-continuous on 
 with
Lipschitz-constant CL � Cku� kW 1;1 (
) .

In particular we can evaluate u� (x) for each x 2 
. Let u � = (u� (x i;j )) (i;j )2I .

Additionally we considera re�ned grid on 
 with meshsize0 < h � h0 and
Nh � M h nodes,where

Nh =
L x

h
+ 1; M h =

L y

h
+ 1 (casen = 2 only):

We denote

I h := f (i; j )ji = 1; : : : ; Nh; j = 1; : : : ; M hg

L0 := max(N h0; M h0): (2.6)

Let
u �

h := (u� (x i;j )) (i;j )2I h :

2.2 Con tin uous Form ulation

Let � > 0 be a regularization parameterand p = 1; 2.

Corresponding to the discretefunctional

F h(uh) := hn
X

(i;j )2I h

f (ui;j � u�
i;j ; jr hui;j j);
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where f (� ; a) : R � R ! R [ f + 1g is de�ned as in (1.53), (1.56) or (1.60),
that is, f (� ; A) is either oneof the functions

f (� ; a) = � 2 + � a2; (2.7)

or

f (� ; a) =
� 2

2jajp
+ � jajp; p = 1; 2; (2.8)

we considerthe continuous functional given by

F : W 1;p(
) ! R [ f + 1g

F (u) =
Z



f (u(x) � u� (x); jr u(x)j) dx:

(2.9)

For the function

f (� ; jaj) =
� 2

2jajp
+ � jajp; p = 1; 2:

we note the following:
Sincef (� ; a) � 0 we have

lim inf
u2 RN h � M h

F h(u) � 0; and lim inf
u2 W 1;p (
)

F (u) � 0:

For the discreteminimization problem, in order to prove the existenceof a
minimizer of F h(u) for �xed h > 0 (seeLemma 2.3.3 below) a coercivity
condition on f (� ; a) and the lower continuity of f (� ; a) are required.

In the continuous case,in order to prove existenceof a minimizer of F (u),
the weakly lower semi-continuity (see[16] for the de�nition of w.l.s.c) is es-
sential, see[27]. As shown in [16], a su�cien t condition for the weakly lower
semi-continuity is that f (� ; jaj) is convex with respect to a.

Note that f (� ; a) = � 2

2jajp + � jajp doesnot match theserequirements.

To overcomethis problem we de�ne

F c : W 1;p(
) ! R+
0

F c(u) :=
Z



f c(u(x) � u� (x); jr u(x)j) dx;

(2.10)

where f c(� ; a) is the convex hull of f (� ; a) with respect to a (see[16]) given
by

f c(� ; a) :=

(
� 2

2jajp + � jajp if
p

2� jajp > j� j;
p

2� j� j else:
(2.11)
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Figure 2.1: Functionsf (� ; a) and f c(� ; a) plotted for � = 2 anda = � 5; : : : ; 5.

For the reader'sconveniencethe graph of f c(� ; a) is plotted in Fig. 2.1.
Note that f c(� ; a) �

p �
2 j� j + � jajp, thus F c(u) < 1 for u 2 W 1;p(
) and

u� 2 W 1;1 (
).

The discretefunctional corresponding to F c(u) is given by

F c
h(u) = hn

X

(i;j )2I h

f c(ui;j � u�
i;j ; jr hui;j j) (2.12)

instead of F h(u).

In the case p = 2 we have the following result:

Theorem 2.2.1. Let u� 2 W 1;1 (
) and

F c : W 1;2(
) ! R+
0

F c(u) =
Z



f c(u(x) � u� (x); jr u(x)j) dx;

(2.13)

with f c(� ; a) being convex with respect to a and coercive, that is that there
existsc0 > 0 suchthat for all � ; a 2 R

c0(j� j2 + jaj2) � f c(� ; a): (2.14)

Moreover we assumethat
F c(u� ) < 1 : (2.15)

Then F c(u) attains a minimizer in W 1;2(
) .
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Proof:
Sincef c(� ; a) is convexwith respect to a, F c(u) is weakly lower semi-continuous
on W 1;2(
), see[16].

Let uk be a minimizing sequenceof F c(u) in W 1;2(
). Without lossof gen-
erality we assumethat

F c(uk) � F c(u� ) =: C;

with C < 1 by assumption(2.15).

Due to the coercivity of f (� ; a) given by (2.14) we have

Z



juk � u� j2 + jr uk j2 �

1
c0

F c(u) �
C
c0

: (2.16)

Moreover, sincea2 � 2(a � b)2 + 2b2 we have

Z



juk j2 � 2

Z



juk � u� j2 + 2ku� k2

L 2 : (2.17)

From (2.16) and (2.17) it follows that

kukk2
L 2 + kr ukk2

L 2 �
2C
c0

+ 2ku� kL 2 :

and thus the the sequenceuk is boundedin W 1;2(
).
The re
exivit y of W 1;2(
) allows to choosea subsequence,also denotedby
uk converging weakly to someu� 2 W 1;2(
). Using the weakly lower semi-
continuity of F c(u) it follows that

F c(u� ) � lim inf
k!1

F c(uk)

and, sinceuk is a minimizing sequence,u� is a minimizer of F c(u).

For the functions de�ned in (2.7) and (2.8) (p = 2) we have:

� f (� ; a) = j� j2+ � jaj2 is convex with respect to a, thus f (� ; a) = f c(� ; a),
and satis�es (2.14). Moreover we have F c(u� ) < 1 . Theorem 2.2.1
shows that F c(u) = F (u) attains a minimizer in W 1;2(
).
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� For f (� ; a) as in (2.8) with p = 2 we have F (u) 6= F c(u), but F c(u) is
a relaxation of F (u), see[27]. It can be easily shown the assumptions
of Theorem2.2.1are satis�ed. Thus F c(u) attains a minimizer.
We refer to minimizers of F c(u) as generalized minimizers of F (u),
sinceif a minimizer of F (u) exists, it is alsoa minimizer of F c(u).

In the case p = 1 we have to considerR(F ; W 1;1(
))( u) de�ned on BV(
)
as follows:

Let u 2 BV(
), such that a sequencein W 1;1(
) L1-converging to u exists,
then

R(F ; W 1;1(
))( u) := inf f lim inf
k! 0

F (uk)j(uk)k � W 1;1(
) ; kuk � ukL 1 ! 0g:

Otherwisewe de�ne
R(F ; W 1;1(
))( u) := + 1 :

In [27] it hasbeenshown that

R(F ; W 1;1(
)) = F c
B V (u) :=

Z



f c(u � u� ; jr uj) + � jD suj(
)

= F c(u) + � jD suj(
) ;

where Du = r u dx + D su is the Lebesguedecomposition of the distribu-
tional gradient of u, seeTheorem2 in [27], and that a minimizer of F c

B V (u)
exists, seeTheorem1 in [27].
We refer to a minimizer of F c

B V (u) as a generalized minimizer of F (u).

Moreover it hasbeenshown that

F c
B V (u) = R(F c; W 1;1(
)) ; (2.18)

seethe proof of Theorem 2 in [27]. In particular we have from (2.18) that
for a minimizer u� 2 BV(
) of F c

B V (u) there exists a sequence(uk)k �
W 1;1(
) ; kuk � u� kL 1 ! 0 such that

F c
B V (u� ) = lim inf

k! 0
F c(uk):

As a consequenceit is su�cien t to considerminimizing sequencesof F c(u)
in W 1;1(
).
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2.3 Theoretical Results

The scope of this section is to provide theoretical results to comparea con-
tinuous functional

F c : W 1;p(
) ! R+
0

F c(u) =
Z



f c(u(x) � u� (x); jr u(x)j) dx;

(2.19)

wheref c(� ; a) is continuous,non-negative and convex with respect to a, with
the corresponding discretefunctional

F c
h : RNh � M h ! R+

0

F c
h(uh) = hn

X

(i;j )2I h

f c(ui;j � u�
i;j ; jr hui;j j): (2.20)

For a given numerical scheme jr h:j we de�ne the operator G : RNh � M h !
RNh � M h by

G(u) := (jr hui;j j)(i;j )2I h : (2.21)

On jr h:j we make the following assumptions:

Assumption 2.

(a2) For everyu 2 C1;1(
) we have

jr hui;j � r u(x i;j )j = O(h):

(a3) G(u) depends continuously on u = (ui;j )(i;j )2I h . (We

usethe norm jv jp :=
� P

(i;j )2I h
jvi;j jp

� 1
p

on RNh � M h .)
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The following assumptionsare madeon f c(� ; a):

Assumption 3.

(a4) Local Lipschitz-continuity of f c(� ; a):
there existsC > 0 only dependingon � , suchthat

jf c(� ; a) � f c(� ; a)j �

(
Cj� � � j if p = 1

C(j� j + j� j)j� � � j if p = 2

jf c(� ; a) � f c(� ; b)j �

(
Cja � bj if p = 1

C(jaj + jbj)ja � bj if p = 2

(a5) Coercivity and Growth-condition of f c(� ; a):
there exist q 2 f 1; 2g; 0 < c0 � C0; independent from � ; a,
suchthat

c0(j� jq + jajp) � f c(� ; a) � C0(j� jq + jajp):

Remark 2.3.1. Note that from (a4) it follows that

jf c(� ; a) � f c(� ; a)j � C(1 + j� j + j� j) j� � � j;

jf c(� ; a) � f c(� ; b)j � C(1 + jaj + jbj) ja � bj:
(2.22)

For the main results of this Section we require that F c(u) and F c
h(u) are

continuous. Let us show that assumption (a4) on f c(� ; a) is su�cien t for
the continuity of F c(u) and F c

h(u). (Note that (2.22) is not su�cien t to pro-
vide continuity in the casep = 1, sincein general

R

 (1 + juj + jvj)( jv � uj) �

Cku � vkL 1 doesnot hold for u; v 2 L 1(
).)

Lemma 2.3.2. Let f c(� ; a) : R � R ! R+
0 satisfy assumption (a4) . Then

F c(u) is continuous with respect to the topology induced by the W 1;p-norm
and F c

h(u) is continuous with respect to the topology induced by the norm

jv jp on RNh � M h given by jv jp :=
� P

(i;j )2I h
jvi;j jp

� 1
p

on RNh � M h .

Proof:

1) Continuity of F c(u):

Let u; v 2 W 1;p(
), v ! u with respect to the topology induced by k:kW 1;p .
Without lossof generality we can assumethat there is c > 0 such that

kvkW 1;p � kukW 1;p + c: (2.23)
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Using assumption (a4) it follows for p = 1 that

j F c(u) � F c(v)j

�
Z




�
�
� f c(u(x) � u� (x); jr u(x)j) � f c(v(x) � u� (x); jr v(x)j)

�
�
� dx

� C
Z




�
�
� f c(u(x) � u� (x); jr u(x)j) � f c(v(x) � u� (x); jr u(x)j)

�
�
�

+
�
�
� f c(v(x) � u� (x); jr u(x)j) � f c(v(x) � u� (x); jr v(x)j)

�
�
� dx

� C
Z



ju(x) � v(x)j dx +

Z



jr u(x) � r v(x)j dx;

which provesthe continuity of F c(u).

In the casep = 2 we have

j F c(u) � F c(v)j (2.24)

�
Z




�
�
� f c(u(x) � u� (x); jr u(x)j) � f c(v(x) � u� (x); jr v(x)j)

�
�
� dx

� C
Z




�
�
� f c(u(x) � u� (x); jr u(x)j) � f c(v(x) � u� (x); jr u(x)j)

�
�
�

+
�
�
�f c(v(x) � u� (x); jr u(x)j) � f c(v(x) � u� (x); jr v(x)j)

�
�
� dx

� C
Z




�
ju(x) � u� (x)j + jv(x) � u� (x)j

�
ju(x) � v(x)j dx

+
Z




�
jr u(x)j + jr v(x)j

�
jr u(x) � r v(x)j dx:

We have

Z




�
ju(x) � u� (x)j + jv(x) � u� (x)j

�
ju(x) � v(x)j dx

�
Z




�
ju(x)j + jv(x)j + 2ju� (x)j

�
ju(x) � v(x)j dx:

(2.25)

Moreover using the Cauchy-Schwarz inequality for L 2(
) (see[1]) and
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(a + b)2 � 2a2 + 2b2 for a;b2 R, we �nd that
Z




�
ju(x)j + jv(x)j + 2ju� (x)j

�
ju(x) � v(x)j dx (2.26)

� C
� Z




�
ju(x)j + jv(x)j + 2ju� (x)j

� 2
dx

� 1
2

� Z



ju(x) � v(x)j2 dx

� 1
2

� C
� Z



ju(x)j2 + jv(x)j2 + 2ju� (x)j2) dx

� 1
2

ku � vkL 2

= C
�
ku(x)k2

L 2 + kvk2
L 2 + 2ku� k2

L 2

� 1
2 ku � vkL 2 :

Inserting (2.26) in (2.25) and using that
q P K

k=1 a2
k �

P K
k=1 jak j, it follows

that Z




�
ju(x) � u� (x)j + jv(x) � u� (x)j

�
ju(x) � v(x)j dx

� C(kukL 2 + kvkL 2 + 2ku� kL 2 ) ku � vkL 2 :
(2.27)

Using the Cauchy-Schwarz inequality we �nd
Z




�
jr u(x)j + jr v(x)j

�
jr u(x) � r v(x)j dx

� C
�
kr uk2

L 2 + kr vk2
L 2

� 1
2 kr u � r vkL 2

� C
�
kr ukL 2 + kr vkL 2

�
kr u � r vkL 2 :

(2.28)

Using (2.27) and (2.28) in (2.24) it follows that

j F c(u) � F c(v)j � C
�
kukL 2 + kvkL 2 + 2ku� kL 2

�
ku � vkL 2

+ C
�
kr ukL 2 + kr vkL 2

�
kr u � r vkL 2 :

(2.29)

Finally, using (2.23) it follows from (2.29) that

j F c(u) � F c(v)j � C(u)
�
ku � vkL 2 + kr u � r vkL 2

�
;

which provesthe continuity.

2) Continuity of F c
h:

Let u; v 2 RNh � M h ,v ! u with respect to the norm j:jp. Without loss of
generality sinceG(:) is continuous we can assumethat there is c > 0 such
that

jv jp � jujp + c; jG(v)jp � jG(u)jp + c: (2.30)
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For p = 1 using (a4) it follows that

j F c
h(u) � F c

h(v)j � hn
X

(i;j )2I h

jf c(ui;j � u�
i;j ; jr hui;j j) � f c(vi;j � u�

i;j ; jr hvi;j j)j

� Chn
X

(i;j )2I h

jui;j � vi;j j +
�
�
� jr hui;j j � jr hvi;j j

�
�
�

� Chn ju � v j1 + jG(u) � G(v)j1:

The continuity of G(u), seeassumption (a3) , provides that G(v) ! G(u)
and thus the continuity of F c

h(u) follows.

For p = 2 we have with (a4) that

j F c
h(u) � F c

h(v)j

� hn
X

(i;j )2I h

�
�
� f c(ui;j � u�

i;j ; jr hui;j j) � f c(vi;j � u�
i;j ; jr hvi;j j)

�
�
�

� Chn
X

(i;j )2I h

�
jui;j � u�

i;j j + jvi;j � u�
i;j j

�
jui;j � vi;j j

+
�
jr hui;j j + jr hvi;j j

� �
�
� jr hui;j j � jr hvi;j j

�
�
� :

(2.31)

We have

hn
X

(i;j )2I h

�
jui;j � u�

i;j j + jvi;j � u�
i;j j

�
jui;j � vi;j j

� hn
X

(i;j )2I h

�
jui;j j + jvi;j j + 2ju�

i;j j
�

jui;j � vi;j j
(2.32)

and with the Cauchy-Schwarz inequality for RNh � M h (see[1]) and
(a + b)2 � 2a2 + 2b2 it follows that

hn
X

(i;j )2I h

�
jui;j j + jvi;j j + 2ju�

i;j j
�
jui;j � vi;j j

� hn
� X

(i;j )2I h

�
jui;j j2 + jvi;j j2 + 2ju�

i;j j2
� 1

2
ju � v j2

= hn (juj22 + jv j22 + 2ju � j22)
1
2 ju � v j2:

(2.33)

Moreover we �nd with the Cauchy-Schwarz inequality for RNh � M h , (a+ b)2 �
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2a2 + 2b2 that

hn
X

(i;j )2I h

�
jr hui;j j + jr hvi;j j

� �
�
� jr hui;j j � jr hvi;j j

�
�
�

� Chn
� X

(i;j )2I h

jr hui;j j2 + jr hvi;j j2
� 1

2
� X

(i;j )2I h

�
�
� jr hui;j j � jr hvi;j j

�
�
�
2� 1

2

� Chn
�

jG(u)j22 + jG(v)j22
� 1

2
jG(u) � G(v)j2:

(2.34)
Inserting (2.33) and (2.34) in (2.31) gives

j F c
h(u) � F c

h(v)j � Chn
� �

juj22 + jv j22 + 2ju � j22
� 1

2 ju � v j2

+
�
jG(u)j22 + jG(v)j22

� 1
2 jG(u) � G(v)j2

�
:

(2.35)

From (2.35) it follows with (2.30) that

j F c
h(u) � F c

h(v)j � C(u) hn (ju � v j2 + jG(u) � G(v)j2) : (2.36)

From (2.36) together with the continuity of G(u), seeassumption (a3) , the
continuity of F c

h(u) follows.

In view of showing consistencybetweenF c(u) and F c
h(u) let us prove that

the minimizers of F c
h(u) exists:

Lemma 2.3.3. Let h > 0 be �xed and F c
h(u) as de�ned in (2.20), with

f c(� ; a) satisfying the assumptions (a4) and (a5) . Then there exists a
minimizer of F c

h(u).

Proof:
Let uk 2 RNh � M h be a minimizing sequenceof F c

h(u). Without loss of
generality, we assumeF c

h(uk) � F c
h(u � ) < 1 . From (a5) it follows that

there exists q 2 N and c0 > 0 such that

c0 hn
X

(i;j )2I h

�
� (uk) i;j � u�

i;j

�
�q

� F c
h(uk) � F c

h(u � ):

Thus it follows for every (i; j ) 2 I h that

j(uk) i;j � u�
i;j jq �

1
c0 hn

F c
h(u � ) =:

C
c0 hn
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and, sincejajq � 2ja � bjq + 2jbjq for a;b2 R; q = 1; 2, it follows that

j(uk) i;j jq �
2C

c0 hn
+ 2ju�

i;j jq:

Thus the sequence(uk)k is boundedin RNh � M h and we can extract a subse-
quence,alsodenotedby (uk)k , convergingto someu � 2 RNh � M h . Assumption
(a4) on f c(� ; a) assertsthe continuity of F c

h(u), seeLemma2.3.2,from which
F c

h(uk) ! F c
h(u � ) follows. Since(uk)k is a minimizing sequenceit follows

that F c
h(u � ) = minu2 RN h � M h F c

h(u).

Lemma2.3.3assertsthat for any sequencehk ! 0 wecan�nd uhk 2 RNh k
M h k

minimizing F c
hk

(u).
Note that the vectorsuh lie in di�erent vectorspacesRNh � M h and thuscannot
compareddirectly, but only after interpolating uh on the correspondinggrids.

The �rst step to prove consistencyof F c
h(u) with F c(u) is to show that the

limes superior of the sequenceF c
hk

(uhk ) = min
v2 R

N h k
M h k

F c
hk

(v) lies below
F min := inf u2 W 1;p (
) F c(u):

Theorem 2.3.4. Let F c(u) and F c
h(u) as de�ned in (2.19) and (2.20), with

f c(� ; a) satisfying the assumptions(a4) and (a5) .
Let F min = inf u2 W 1;p (
) F c(u). Then

lim sup
h! 0

min
u2 RN h � M h

F c
h(u) � F min :

Proof:
Let us prove the statement for n = 2:

Let " > 0. Let (uk)k 2 W 1;p(
) be a minimizing sequenceof F c(u), from
which we depict uk0 , such that

F c(uk0 ) � F min +
"
2

: (2.37)

SinceF c(u) is continuous(seeLemma2.3.2)and C1 (
) is densein W 1;p(
),
seeLemma A 6.7. in [1], we can choose~u 2 C1 (
) such that

j F c(uk0 ) � F c(~u)j �
"
4

: (2.38)

Let H ~u(x) we the Hessianof ~u and ~u = (~u(x i;j )) (i;j )2I h .
Let Q 2 Q denotethe grid cells.
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We have

j F c
h(~u) � F c(~u)j

� h2
X

(i;j )2I h

�
�
� f c(~ui;j � u�

i;j ; jr h ~ui;j j) � f c(~u(x i;j ) � u� (x i;j ); jr ~u(x i;j )j)
�
�
�

| {z }
=: T1

+
h2

4

�
�
�
X

Q2Q

X

x i;j 2 Q

f c(~u(x i;j ) � u� (x i;j ); jr ~u(x i;j )j) �
Z

Q
f c(~u(x) � u� (x); jr ~u(x)j) dx

�
�
�

| {z }
=: T2

+
3
4

h2
X

x i;j 2 @


�
�
� f c(~ui;j � u�

i;j ; jr h ~ui;j j)
�
�
�

| {z }
=: T3

:

Term T1 is an error term concerningthe di�erence betweenr u(x i;j ) and the
numerical schemer hui;j , term T2 describesthe di�erence betweenexact in-
tegration and a quadraturerule and T3 describesadditional terms concerning
the boundary nodesof the grid.

For T1 we have the following estimates:
For p = 1, since~ui;j = ~u(x i;j ), it follows from (a4) that

T1 � Ch2
X

(i;j )2I h

�
�
� jr h ~ui;j j � jr ~u(x i;j )j

�
�
� :

and for p = 2 that

T1 � Ch2
X

(i;j )2I h

�
jr h ~ui;j j + jr ~u(x i;j )j

� �
�
� jr h ~ui;j j � jr ~u(x i;j )j

�
�
� :

Since ~u 2 C1 (
) we can useassumption (a2) to �nd h1 > 0, such that for
every 0 � h � h1 and every (i; j ) 2 I h

jr h ~ui;j j � jr ~u(x i;j )j + 1: (2.39)

Thus

T1 � Ch2NhMh (kr ~uk1 + 1) sup
(i;j )2I h

�
�
� jr h ~u(x i;j )j � jr ~u(x i;j )j

�
�
� :

Note that h2NhMh � L2
0.



2.3. THEORETICAL RESULTS 47

Since
�
�
� jr h ~u(x i;j )j � jr ~u(x i;j )j

�
�
� = O(h), seeassumption (a2) , we can �nd

h2 > 0 such that for p = 1; 2 and all 0 < h � h2

T1 �
"
12

: (2.40)

To estimate term T2 we note that f c(� ; a), ~u and u� are continuous, thus for
each Q we can �nd y 2 Q such that

1
4

X

x i;j 2 Q

f (~u(x i;j ) � u� (x i;j ); jr ~u(x i;j )j) = f c(~u(y) � u� (y); jr ~u(y)j);

wherex i;j 2 Q are the verticesof squareQ. Thus

T2 �
X

Q2Q

Z

Q

�
�
� f c(~u(x) � u� (x); jr ~u(x)j) � f c(~u(y) � u� (y); jr ~u(y)j)

�
�
� dx

�
X

Q2Q

Z

Q

�
�
� f c(~u(x) � u� (x); jr ~u(x)j) � f c(~u(y) � u� (y); jr ~u(x)j)

�
�
�

+
�
�
�f c(~u(y) � u� (y); jr ~u(x)j) � f c(~u(y) � u� (y); jr ~u(y)j)

�
�
� dx:

Assumption (a4) provides for p = 1; 2 (seeRemark 2.3.1) that

jf c(� ; a) � f c(� ; a)j � C(1 + j� j + j� j) j� � � j

jf c(� ; a) � f c(� ; b)j � C(1 + jaj + jbj) ja � bj

and thus it follows since~u 2 C1 (
 ) and u� being continuouson 
 that

T2 � C
X

Q2Q

Z

Q
(1 + j~u(x)j + j~u(y)j + ju� (x)j + ju� (y)j)

� (j~u(x) � ~u(y)j + ju� (x) � u� (y)j)

+ (1 + jr ~u(x)j + jr ~u(y)j) jr ~u(x) � r ~u(y)j dx

� C(~u; u� )
X

Q2Q

Z

Q
j~u(x) � ~u(y)j + ju� (x) � u� (y)j

+ jr ~u(x) � r ~u(y)j dx:

(2.41)

Let Cl := max(kr ~uk1 ; kH ~uk1 ; CL ), where CL is the Lipschitz-constant of
u� . Then

j~u(x) � ~u(y)j + ju� (x) � u� (y)j + jr ~u(x) � r ~u(y)j � 3Clh: (2.42)
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Inserting (2.42) in (2.41) gives

T2 � C(~u; u� )j
 jCl h:

We can �nd h3 > 0 such that for all 0 < h � h3

T2 �
"
12

: (2.43)

Finally, to estimate T3, using (2.39) and assumptions(a2) and (a5) gives

T3 =
3
4

h2
X

x i;j 2 @


�
�
� f c(~ui;j � u�

i;j ; jr h ~ui;j j)
�
�
�

� C(~u; u� )h2
X

x i;j 2 @


�
j~ui;j j + ju�

i;j j + jr h ~ui;j j
�

� C(~u; u� )h2
X

x i;j 2 @


�
j~ui;j j + ju�

i;j j + jr ~u(x i;j )j + 1
�

� C(~u; u� ) 2(Nh + M h) h2;

where@
 denotesthe boundary of 
.
SincehNh; hM h � L0, we have T3 = O(h). We choose0 < h4, such that for
0 < h � h4

T3 �
"
12

: (2.44)

Now let h5 := min(h1; h2; h3; h4), then we have from (2.40), (2.43) and (2.44)
that for h � h5

j F c(~u) � F c
h(~u)j � T1 + T2 + T3 �

"
4

(2.45)

and using (2.38)

j F c(uk0 ) � F c
h(~u)j � j F c(uk0 ) � F c(~u)j + j F c(~u) � F c

h(~u)j �
"
2

: (2.46)

It follows from (2.46) and (2.37) that for h � h5

F c
h(~u) � F c(uk0 ) +

"
2

� F min + ":

Thus
min

u2 RN h � M h
� F c

h(~u) � F min + ":

The proof for n = 1 is analogous.
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The secondstep to show consistencyis to check if the limes inferior of the
sequenceF c

hk
(uhk ) = min

v2 R
N h k

M h k
F c

hk
(v) lies above F min .

With the proof of the next Theorem we seethat a su�cien t condition for
lim inf hk ! 0 F c

hk
(uhk ) � F min is that for given " > 0 and h being small

enough an uh 2 W 1;p(
) of the discrete data uh can be found such that
limh! 0 F c

h(uh ) = F c(uh). Let us formulate this assumptionmore precisely:

Assumption 4.

(a6) Let F c(u) and F c
h(u) as de�ned in (2.19) and (2.20).

For h ! 0 and (uh)h be given by

uh := argmin
u2 RN h � M h

F c
h(u)

and every " > 0 there existsh1 > 0 suchthat for every
0 < h � h1 we can �nd uh 2 W 1;p(
) satisfying

F c(uh) � F c
h(uh) + ":

From lim inf hk ! 0 F c
hk

(uhk ) � F min and lim suphk ! 0 F c
hk

(uhk ) � F min then it
follows that limh! 0 F c

h(uh) = F min :

Theorem 2.3.5. Let h ! 0 and (uh)h be given by

uh := argmin
u2 RN h � M h

F c
h(u)

with f (� ; a) satisfying assumptions(a4) and (a5) .
Moreover let assumption (a6) be satis�ed.

Then
lim
h! 0

F c
h(uh) = F min : (2.47)

Proof:
Let " > 0. Theorem 2.3.4 provides the existenceof h1 > 0 such that every
uh with h � h1 satis�es

F c
h(uh) � F min + ":

From assumption (a6) we have that there exists h2 > 0 such that for every
h � h2 uh exists with

F c
h(uh) � F c(uh) � ": (2.48)
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From (2.48) it follows that

F c
h(uh) � F min � ":

Thus j F c
h(u) � F min j � " for h � min(h1; h2).

So far we have not beenable to prove assumption (a6) for arbitrary func-
tions and numerical schemesjr h:j. We do this for speci�c functionals and
numerical schemein Sections2.4.1 and 2.4.2, using su�cien t interpolations
of the data uh.

For a sequenceof functions uh as in Theorem2.3.5we can show also that it
is a minimizing sequencefor F c(u):

Corollary 2.3.6. Let (uh)h be a sequence as in Theorem 2.3.5 satisfying
assumption (a6) . Then (uh)h is a minimizing sequence of F c(u).

Proof:
Let " > 0.
From assumption (a6) we have that there exists h1 > 0 such that for 0 <
h � h1

F c(uh) � F c
h(uh) +

"
2

(2.49)

and from (2.47) we have that there exists h2 > 0 such that for 0 < h � h2

F c
h(uh) � F min +

"
2

: (2.50)

From (2.49) and (2.50) it follows that for 0 < h � min(h1; h2)

F c(uh) � F min + ":

The above results show, that minimizing F c
h(u) for h ! 0 and interpolating

the discreteminimizers uh in a way, that assumption (a6) is satis�ed, leads
to minimizing sequencefor F c(u). Moreover we have F c

h(u) ! F min .
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2.4 Examples

Let us show that assumptions(a4) and (a5) are satis�ed for the functions
f c(� ; a) de�ned in (2.7) and (2.11):

Example 2.4.1 (Additiv e Gaussiannoise). Let us recall the functional for
denoisingimageswith additive Gaussiannoise:

F h(u) = hn
X

(i;j )2I h

f (ui;j � u�
i;j ; jr hui;j j);

where f (� ; a) = � 2 + � a2.
Note that f (� ; a) is convexwith respect to a, thus f c(� ; a) = f (� ; a) and con-
sequently F c(u) = F (u); F c

h(u) = F h(u).

It is easy to see that f (� ; a) satis�es assumptions(a4) and (a5) with p = 2.

The corresponding continuous functional on W 1;2(
) is given by

F (u) =
Z



f (u � u� ; jr uj)

de�ned on W 1;2(
) . �

Example 2.4.2 (Errors in sampling points). The function

f c(� ; a) =

(
� 2

2jajp + � jajp if
p

2� jajp > j� j;
p

2� j� j else;

with p = 1; 2 satis�es the assumptions(a4) and (a5) :

Assumption (a4) : Since f c is continuous, it is su�cient to check the as-
sumption on the domains

D1 := f (� ; a) 2 R2 :
p

2� jajp > j� jg;

where f c(� ; a) = � 2

2jajp + � jajp and

D2 := f (� ; a) 2 R2 :
p

2� jajp � j� jg;

where f c(� ; a) =
p

2� j� j, separately.
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For (� ; a); (� ; a) 2 D1 we have

f c(� ; a) � f c(� ; a) =
�

�
2jajp

+
�

2jajp

�
(� � � )

and j � j
2jajp ; j � j

2jajp are bounded by
p

2�
2 . Thus

jf c(� ; a) � f c(� ; a)j �
p

2� j� � � j: (2.51)

Let (� ; a); (� ; b) 2 D1. For the casep = 1 we �nd that

jf c(� ; a) � f c(� ; b)j =
�
�
�

� 2

2jaj
+ � jaj �

� 2

2jbj
� � jbj

�
�
�

�
� � 2

2jaj jbj
+ �

� �
�
� jaj � jbj

�
�
� �

� � 2

2jaj jbj
+ �

�
ja � bj

and � 2

2jaj jbj is bounded by � , since j � j
jaj <

p
2� and j � j

jbj <
p

2� . Thus

jf c(� ; a) � f c(� ; b)j = 2� ja � bj:

Analogouslyfor the casep = 2 we have

jf c(� ; a) � f c(� ; b)j =
�
�
�

� 2

2jaj2
+ � jaj2 �

� 2

2jbj2
� � jbj2

�
�
�

�
� � 2

2jaj2jbj2
+ �

� �
�
� jaj2 � jb2j

�
�
�

�
� � 2

2jaj2jbj2
+ �

� �
�
� jaj + jbj

�
�
�
�
�
� jaj � jbj

�
�
�

�
� � 2

2jaj2jbj2
+ �

�
(jaj + jbj) ja � bj

and � 2

2jaj2 jbj2 is bounded by � , since j � j
jaj2 <

p
2� and j � j

jbj2 <
p

2� . Thus

jf c(� ; a) � f c(� ; b)j = 2� (jaj + jbj) ja � bj:

On D2 we havefor p = 1; 2

jf c(� ; a) � f c(� ; a)j =
p

2�
�
�
� j� j � j� j

�
�
� �

p
2� j� � � j (2.52)

and
f c(� ; a) � f c(� ; b) = 0:
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Assumption (a5) : If
p

2� jajp > j� j we have

f c(� ; a) � � jajp >
�
2

jajp +

r
�
8

j� j � min
�

�
2

;

r
�
8

�
(j� j + jajp)

and

f c(� ; a) =
� 2

2jajp
+ � jajp �

r
�
2

j� j + � jajp � max(� ;

r
�
2

)( j� j + jajp):

If
p

2� jajp � j� j we have

f c(� ; a) =
p

2� j� j

�

r
�
2

j� j +

r
�
2

p
2� jajp =

r
�
2

j� j + � jajp

� min
� r

�
2

; �
�

(j� j + jajp)

and
f c(� ; a) =

p
2� j� j �

p
2� (j� j + jajp):

Thus we set

c0 := min
�

�
2

;

r
�
8

�
; C0 := max(� ;

p
2� ):

Note that we haveproven a stronger statementthan (a4) , namely that for
� ; � ; a 2 R and p = 1; 2

jf c(� ; a) � f c(� ; a)j �
p

2� j� � � j; (2.53)

see (2.51) and (2.52), which is used in the following Sections. �

2.4.1 One-dimensional NCBV-F unctional

In this section we considerone-dimensionaldata and f c(� ; a) as de�ned in
(2.4.2).

For the discrete functional we have to specify jr h:j In our �rst examplewe
useone-sideddi�erences:
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Example 2.4.3 (One-sideddi�erences). Let x i = (i � 1)h; i = 1; : : : ; Nh; h =
L x

Nh � 1 , u 2 RNh and

jr hui j :=
1
h

jui +1 � ui j for i = 1; : : : ; Nh � 1;

jr huNh j :=
1
h

juNh � uNh � 1j:

Note that havedecided to use a left-sided di�er ence to de�ne jr huNh j. Al-
ternatively one could �x uN or set jr huNh j = 0, which refers to a Dirichlet
or Neumannboundary condition.

Obviouslyr hui satis�es assumptions(a2) and (a3) .

We associate with u 2 RNh the linear interpolation u, i.e. u is continuous,
linear on Qi := [x i ; x i +1 ]; i = 1; : : : ; Nh � 1 and attains the valuesui at
x i ; i = 1; : : : ; Nh, see Fig. 2.2.

u1

u2

u4
u3

u5

u6

0 4hh 2h 3h 5h

u(x)

x

i+1

h
u  =ih

u     � u i

Figure 2.2: Linear interpolation of u 2 RNh on a one-dimensionalgrid. In
this examplewe useone-sideddi�erences for r u in the functional F h(u).

Let

f c(� ; a) =

(
� 2

2jajp + � jajp if
p

2� jajp > j� j
p

2� j� j else
; p = 1; 2;

and

F c
h(u) := h

NhX

i =1

f c
�
ui � u�

i ; jr hui j
�

:

Moreover, let
uh = argmin

u2 RN h

F c
h(u):
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and uh(x) being the linear interpolation of uh.
The following Lemma states that assumption (a6) is satis�ed for uh; uh.
f c(� ; a) also satis�es the assumptions (a4) and (a5) , see Example 2.4.2.
Thus Theorem 2.3.5 can be applied, stating that F c

h(uh) ! F min for h ! 0.
Corollary 2.3.6 providesin addition that (uh)h is a minimizing sequence in
W 1;p(
) for the continuous functional F c(u). �

Lemma 2.4.4. Let F c
h(u) be as in example2.4.3 and

F c(u) =
Z



f c(u � u� ; jr uj):

Moreover, let
uh := argmin

u2 RN h

F c
h(u)

and uh 2 W 1;p(
) the interpolation of u as in Example2.4.3.

For every " > 0 there existsh1 > 0 suchthat for 0 < h � h1 uh satis�es

F c(uh) � F c
h(uh) + "

For proving the lemma,we needan a-priori bound on
P Nh

i =1 hjr h(uh) i j inde-
pendent from h, as provided by the following lemma:

Lemma 2.4.5 (A-priori bound). Let f c(� ; a) satisfy assumption (a5) and

F c
h(u) =

NhX

i =1

hf c(ui � u�
i ; jr hui j):

Let C > 0 and D � RNh suchthat for every u 2 D

F c
h(u) � C:

Then for u 2 D we have

NhX

i =1

hjr hui j �
C
c0

+ 2L0;

where c0 is the constant from assumption (a5) and L 0 is de�ned as in (2.6).
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Proof:
For p = 1 it follows from (a5) that

NhX

i =1

hjr hui j �
1
c0

NhX

i =1

hf c(ui � u�
i ; jr hui j) �

C
c0

;

which provesthe statement for p = 1.

For p = 2 we have

NhX

i =1

hjr hui j2 �
1
c0

NhX

i =1

hf c(ui � u�
i ; jr hui j) �

C
c0

(2.54)

and with (a + b)2 � 2a2 + 2b2 that

NhX

i =1

hjr ui j �
NhX

i =1

h(1 + jr ui j)2

� 2(
NhX

i =1

hjr ui j2) + 2Nhh � 2(
NhX

i =1

hjr ui j2) + 2L0:

(2.55)

Combining (2.54) and (2.55) provesthe statement of the Lemma for p = 2.

Proof of Lemma2.4.4:

Additionally to F c
h(u) we consider

~F
c
h(u) := h

Nh � 1X

i =1

f c
�
ui � u�

i ; jr hui j
�

:

Then, sincef c(uNh � u�
Nh

; jr huNh j) � 0 we have

~F
c
h(u) � F c

h(u) (2.56)

Let " > 0. Applying Theorem(2.3.4) on F c
h(u) we �nd h1 > 0, such that for

every 0 < h � h1.
~F

c
h(uh) � F c

h(u) � F min + ": (2.57)
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For the sake of notation we omit the index h for the entries of uh.
We have

j ~F
c
h(uh) � F c(uh)j

�
Nh � 1X

i =1

�
�
�h f c(ui � u�

i ; jr hui j) �
Z

Q i

f c(uh(x) � u� (x); jr uh(x)j) dx
�
�
�

�
Nh � 1X

i =1

Z

Q i

�
�
� f c(ui � u�

i ; jr hui j) � f c(uh(x) � u� (x); jr uh(x)j)
�
�
� dx:

Note that jr hui j = jr u(x)j on every Qi ; i = 1; : : : ; Nh � 1.
Thus from (2.53) it follows that

j ~F
c
h(uh) � F c(uh)j �

p
2�

Nh � 1X

i =1

�
�
�
Z

Q i

juh(x) � u(x i )j + ju� (x) � u� (x i )j dx
�
�
�:

Sinceu is linear in each interval Qi with gradient r hui and u� is Lipschitz-
continuouswith constant CL we have with jQi j = h and

P Nh � 1
i =1

R
Q i

dx = L x

that

j ~F
c
h(uh) � F c(uh)j �

p
2�

Nh � 1X

i =1

Z

Q i

(hjr hui j + CL h) dx

�
p

2�

  
Nh � 1X

i =1

hjr hui j

!

+ L xCL

!

h:

(2.58)

Moreover from Lemma 2.4.5and (2.57) we have an a-priori upper bound onP Nh � 1
i =1 hjr hui j:

Nh � 1X

i =1

hjr hui j �
NhX

i =1

hjr hui j �
1
c0

(F min + ") + 2L0: (2.59)

This a-priori bound together with (2.58) provides that for every " > 0 we
can chooseh1 > 0, such that for every 0 < h � h1

j ~F
c
h(uh) � F c(uh)j � " (2.60)

holds. Finally combining (2.56) and (2.60) it follows that

F c(u) � ~F
c
h(uh) + " � F c

h(uh) + ":
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We are interested in numerical schemesbeing invariant under the transfor-
mations M (u) := (u1; : : : ; uNh ) 7! (uNh ; : : : ; u1) and M (u � ).
For this reasonwe considera secondexample,wherejr hui j is basedon cen-
tral di�erences and thus depending symmetrically on u.

u1

u2

u3

u4

x ~ x ~x ~

u(x)

x

given data

interpolated data
function u

Q QQ Q

x  =3hx  =2hx  =h2x  =01 3 42 3 4

1 2 3 4

h

Figure 2.3: Construction of function u, F (u) � F h(u) + " from given data
u = argminv 2 RN h F h(v) on a one-dimensionalgrid with Nh = 4.

Example 2.4.6 (Central Di�erences I) . Let

jr hui j :=

8
>>>><

>>>>:

jui +1 � ui j
h

if i = 1;
jui +1 � ui � 1j

2h
for i = 2; : : : Nh � 1;

jui � ui � 1j
h

if i = Nh:

and

F c
h(u) =

NhX

i =1

f c(ui � u�
i ; jr hui j)

with

f c(� ; a) =

(
� 2

2jajp + � jajp if
p

2� jajp > j� j;
p

2� j� j else:
p = 1; 2: (2.61)

Morover let
uh := argmin

u2 RN h

F c
h(u):
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We consider the following interpolation of the data uh:

Let (u1; u2; ; : : : ; uNh ) be the entries of uh. (For simplicity of notation we
omit index h for the entries of uh.)

Additionally to the grid points x i ; i = 1; : : : ; Nh weconsider the mid points of
the grid cells given by ~x i := x i + x i � 1

2 ; i = 2; : : : Nh. Let ~x1 = x1; ~xNh +1 = xNh .
We set ~u1 = u1, ~ui := u i + u i � 1

2 ; i = 2; : : : ; Nh and ~uNh +1 = uNh . Moreover, let
Qi := [~x i ; ~x i +1 ]; i = 1; : : : ; Nh, see Fig. 2.3.

Now we consider uh as the linear interpolation of (~u1; ~u2; : : : ; ~uNh +1 ).

Then for uh we havethat

jr uh(x1)j = jr hu1j;

for i = 2; : : : ; Nh � 1 :

jr uh(x i )j =
j~ui +1 � ~ui j

h
=

j u i +1 + u i

2 � u i � u i � 1

2 j
h

= jr hui j;

jr uh(xNh )j = jr huNh j:

(2.62)

Note that for uh de�ned as above we have uh(x i ) = 1
4(ui +1 + 2ui + ui � 1),

i = 2: : : Nh � 1, which refers to an implicit smoothing of the data uh.

Lemma2.4.8 belowprovidesthat (uh)h satis�es assumption (a6) . Applying
Theorem 2.3.5 and Corollary 2.3.6 it follows that F c

h(uh) ! F min for h ! 0
and that (uh)h � W 1;p(
) is a minimizing sequence of F c(u).

�

Numerical tests show that using jr hui j := j u i +1 � u i � 1

2h j providesunsatisfactory
results, seeChapter 4. We therefore introducea di�erent schemefor jr hui j
given as follows:

Example 2.4.7 (Central Di�erences I I) . Now let

jr hui j :=

8
>>>><

>>>>:

jui +1 � ui j
h

if i = 1;
jui +1 � ui j + jui � ui � 1j

2h
for i = 2; : : : Nh � 1;

jui � ui � 1j
h

if i = Nh:



60 CHAPTER 2. NUMERICS

and

F c
h(u) =

NhX

i =1

f c(ui � u�
i ; jr hui j)

with f c(� ; a) as in Example2.4.7 and

uh := argmin
u2 RN h

F c
h(u):

Let uh be a linear interpolation of uh as in the examplebefore, then for uh

we havethat

jr uh(x1)j = jr hu1j;

for i = 2; : : : ; Nh � 1 :

jr uh(x i )j =
j~ui +1 � ~ui j

h
=

j u i +1 + u i

2 � u i � u i � 1

2 j
h

�
jui +1 � ui j

2h
+

jui � ui � 1j
2h

= jr hui j;

jr uh(xNh )j = jr huNh j:

(2.63)

Lemma2.4.8 belowprovidesthat (uh)h satis�es assumption (a6) . Applying
Theorem 2.3.5 and Corollary 2.3.6 it follows that F c

h(uh) ! F min for h ! 0
and that (uh)h � W 1;p(
) is a minimizing sequence of F c(u). �

Lemma 2.4.8. Let jr hui j be as in Example2.4.6 or 2.4.7 and

F c
h(u) =

NhX

i =1

f c(ui � u�
i ; jr hui j) F c(u) =

Z



f c(u � u� ; jr uj):

Moreover let
uh := argmin

u2 RN h

F c
h(u)

and uh 2 W 1;p(
) an interpolation as in Examples2.4.6 and 2.4.7.
In particular we have

jr uh(x i )j � jr hui j; i = 1; : : : ; Nh; (2.64)

see (2.62) and (2.63). Then for every" > 0 there existsh1 > 0 suchthat for
every 0 < h � h1

F c(uh) � F c
h(uh) + ": (2.65)

The proof of Lemma 2.4.8can be found in the Appendix A.2.
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2.4.2 Tw o-dimensional NCBV-F unctional

Let us considerthe two-dimensionalcase:

One important property of the interpolation of the data uh used in the
one-dimensionalcase is that the functions uh are piecewiselinear. This
approach motivates to also use linear interpolation in the two-dimensional
case,which requiresa feasibletriangulation of 
, i.e. a partition of 
 into
triangles. Then in order to compareF (u) and F h(u), in generalwe have
to sum up over f c(ui;j � u�

i;j ; jr k
hui;j j) more than once per node x i;j with

jr k
hui;j j; k = 1; : : : ; K approximating the gradient on triangles adjacent to

x i;j . As a consequence,we obtain a functional

F c
h(u) =

h2

K

X

(i;j )2I h

KX

k=1

f c(ui;j � u�
i;j ; jr k

hui;j j): (2.66)

not being exactly of the form (2.20).

In the following we usea triangulation with quadratic elements and bilinear
interpolation of the discrete data ~uh, but also ending up with a functional
F c

h(u) of the form (2.66).

The triangulation is basedon a regular quadratic two-dimensionalgrid with
meshsizeh0 > 0, referredto as the coarsegrid, seeSection2.1.

We considera successive re�nement of the grid with meshsizesh = h0
2m ; m 2

N0. By Th we denote the set of grid cells (elements) with sizeh, by N h the
nodesof the grid and by Nh(Q) the adjacent nodesof cell Q 2 Th.

Let

f c : R � R ! R+
0

f c(� ; a) =

(
� 2

2jajp + � jajp if
p

2� jajp > j� j
p

2� j� j else
; p = 1; 2:

(2.67)

In example2.4.2we have shown that f c(� ; a) satis�es assumptions(a4) and
(a5) aswell as the stronger inequality (2.53), which is required in the proofs
below.
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1u i,jh

3u i,jh

4u i,jh

2u i,jh

Q2

Q1

Q3

Q4

ui,ji�1,j

i,j�1

i+1,j

ui,j+1

u

u

u

Figure 2.4: De�nition of r huk
i;j . We have r k

hui;j = r ujQk (x i;j ) where
Q1; : : : Q4 denotethe cellsadjacent to x i;j .

Let K i;j � f 1; 2; 3; 4g; (i; j ) 2 I h be de�ned by

K 1;1 = f 1g (upper left corner)

K Nh ;1 = f 2g (upper right c.)

K 1;M h = f 3g (lower left c.)

K Nh ;M h = f 4g (lower right c.)

K i; 1 = f 1; 4g i = 2; : : : ; Nh � 1 (upper boundary)

K i;M h = f 2; 3g i = 2; : : : ; Nh � 1 (lower boundary)

K 1;j = f 1; 2g j = 2; : : : ; M h � 1 (left boundary)

K Nh ;j = f 3; 4g j = 2; : : : ; M h � 1; (right boundary)

K i;j = f 1; 2; 3; 4g else

(2.68)

and

r 1
hui;j =

1
h

�
ui +1 ;j � ui;j

ui;j +1 � ui;j

�
for 1 � i < Nh; 1 � j < M h;

r 2
hui;j =

1
h

�
ui +1 ;j � ui;j

ui;j � ui;j � 1

�
for 1 � i < Nh; 1 < j � M h;

r 3
hui;j =

1
h

�
ui;j � ui � 1;j

ui;j � ui;j � 1

�
for 1 < i � Nh; 1 � j < M h;

r 4
hui;j =

1
h

�
ui;j � ui � 1;j

ui;j +1 � ui;j

�
for 1 < i � Nh; 1 < j � M h:

Thus r k
hui;j is de�ned for k 2 K i;j .
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Prop osition 2.4.9. Let u� 2 W 1;1 (
) , u � 2 RNh � M h be given by u�
i;j =

u� (x i;j ); (i; j ) 2 I h and

F c(u) = F c(u; u� ) =
Z



f c(u � u� ; jr uj)

F c
h(u) = F c

h(uh; u � ) :=
h2

4

X

(i;j )2I h

X

k2 K i;j

f c(ui;j � u�
i;j ; jr k

hui;j j):
(2.69)

Moreover for h = h0
2m ; m 2 N0 let uh 2 RNh � M h be given by

uh := argmin
u2 RN h � M h

F h(u; u �
h);

where u �
h is given by bilinear interpolation of u � on the grid with meshsize

h. Let uh 2 W 1;p(
) be the bilinear interpolation of uh on grid with mesh
sizeh.

For every " > 0 there existsm0 2 N suchthat for h = h0
2m ; m � m0

F c(uh) � F c
h(uh) + ":

holds.

The following lemmasare required for the proof of Proposition 2.4.9:

Lemma 2.4.10. Let f c(� ; a) : R � R ! R+
0 as de�ned in (2.67). Let vh 2

RNh M h be �xed and vh 2 W 1;p(
) be the bilinear interpolation of vh on the
coarse grid.
Moreover let

vh := (vh(x i;j )) (;j )2I h :

Then
jF c(vh) � F c

h(vh)j = O(h): (2.70)

Proof:

Note that

F c
h(vh) =

h2

4

X

Q2T h

X

~x2N h (Q)

f c(vh(~x) � u� (~x); jr (vh) jQ(~x)j):
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We considera �xed grid cell Q 2 Th.
Sincev is bilinear and f c(� ; a) and u� are continuous,there existsy 2 Q such
that

1
4

X

~x2N h (Q)

f c(vh(~x) � u� (~x); jr (vh) jQ(~x)j) = f c(vh(y) � u� (y); jr vh(y)j):

from which follows

jF c(vh) � F c
h(vh)j

�
X

Q2T h

Z

Q

�
�
� f c(vh(x) � u� (x); jr vh(x)j) � f c(vh(y) � u� (y); jr vh(y)j)

�
�
� dx:

Using (2.53) and (2.22) (seeRemark 2.3.1) we have

jF c(vh) � F c
h(vh)j

� C
X

Q2T h

Z

Q
jvh(x) � vh(y)j + ju� (x) � u� (y)j

+ (1 + jr vh(x)j + jr vh(y)j) (jr vh(x) � r vh(y)j) dx:

Let kr vhk1 = maxQ2T h 0 ;x 2N h 0
( Q )

jr (vh) jQ(x)j.
Then

jF c(vh) � F c
h(vh )j � C(jr vhk1 )

�
� X

Q2T h

Z

Q
jvh(x) � vh(y)j + ju� (x) � u� (y)j + jr vh(x) � r vh(y)j dx

�
:

Note that vh and r vh areelement-wise bilinear and thusLipschitz-continuous
and also u� is Lipschitz-continuous. Let Cl denote the maximum over all
Lipschitz-constants of vh; u� and r vh over all elements Q 2 Th.
Then we have

jF c(vh) � F c
h(vh)j � CCl

X

Q2T h

Z

Q
h = CCl j
 jh:

Lemma 2.4.11. For every " > 0 there existsh1 > 0, suchthat for 0 < h �
h1 and u�

h being a bilinear interpolation of u� (x i;j ); x i;j 2 Nh on the grid

j F c(:; u� ) � F c(:; u�
h)j � ":
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Proof:
Let v 2 W 1;p(
).

Using (2.53) it follows that

j F c(v; u� ) � F c(v; u�
h)j

�
Z




�
�
� f c(v(x) � u� (x); jr v(x)j) � f c(v(x) � u�

h(x); jr v(x)j)
�
�
�

�
p

2�
Z



ju� (x) � u�

h(x)j dx:

(2.71)

Sinceu�
h is a bilinear interpolation of u� , which is Lipschitz-continuous, also

u�
h is Lipschitz-continuous with the sameLipschitz-constant CL . Moreover

we have u�
h(xQ) = u� (xQ) for any vertex xQ of Q 2 Th. Thus

Z



ju� (x) � u�

h(x)j �
X

Q2T h

Z

Q
ju� (x) � u� (xQ)j + ju�

h(x) � u�
h(xQ)j dx

� 2
X

Q2T h

Z

Q
CL h = 2j
 jCL h:

(2.72)

Inserting (2.72) in (2.71) gives

j F c(v; u� ) � F c(v; u�
h)j = O(h):

Then for every 0 < h � h2 and v 2 W 1;p(
)

j F c(v; u� ) � F c(v; u�
h)j � ":

In the proof of Proposition 2.4.9we approximate u� by a bilinear interpola-
tion on the grid. Thereforethe following Lemmaassumesa bilinear u� = u�

h.

Lemma 2.4.12. Let u� be bilinear on the grid of meshsizeh.
Let F c

h(v) be as in (2.69), vh 2 RNh � M h and vh 2 W 1;p(
) the bilinear in-
terpolation of vh on the grid with meshsizeh.

For a re�nement of the grid with meshsize ~h = h
2m ; m 2 N0 we have

F c
~h(v~h) � F c

h(vh);

where v~h are the data given by (vh(x))x2N ~h
.
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xm

xn

x w xe

x2xsx1

x 3 x4

h

Q

Figure 2.5: Re�nement of a grid cell Q into four sub-cells:new nodesxn , xe,
xs, xw and xm are introduced.

Proof:
Without loss of generality we considerone re�nement step with mesh size
~h = h=2 for the �ner grid.
Let vh(x) be the bilinear interpolation of vh on the grid with meshsizeh.

For a given element Q 2 Th we de�ne

TQ :=
X

x2N (Q)

h2

4
f c(vh(x) � u� (x); jr vh(x)j);

and analogously ~T ~Q ; ~Q 2 T~h.
We will show TQ �

P
~Q2T h 1 ; ~Q� Q

~T ~Q.

Let without lossof generality Q = [0; h]2. By x1 := (0; 0); x2 := (h; 0); x3 :=
(h; 0) and x4 := (h; h) we denote the vertices of element Q, by xs :=
(h=2; 0); xn := (h=2; h); xw := (0; h=2) and xe := (h; h=2) the mid points
of the edgesof Q and by xm := (h=2; h=2) the midpoint of Q, seeFig. 2.5.

Due to the convexity of f c and the linearity of vh; u� along the edgesof Q we
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have

TQ �
h2

8

X

x2N (Q)

f c(vh(x) � u� (x); jr vh(x)j)

+
h2

4
f c

� 1
2

(vh(x1) + vh(x2) � u� (x1) � u� (x2)) ; j
1
2

(r vh(x1) + r vh(x2)) j
�

+
h2

4
f c

� 1
2

(vh(x3) + vh(x4) � u� (x3) � u� (x4)) ; j
1
2

(r vh(x3) + r vh(x4)) j
�

=
h2

8

X

x2N (Q)

f c(vh(x) � u� (x); jr hvh(x)j)

+
h2

4
f c

�
vh(xs) � u� (xs); jr vh(xs)j

�
+

h2

4
f c

�
vh(xn ) � u� (xn ); jr vh(xn )j

�

�
h2

16

X

x2N (Q)

f c(vh(x) � u� (x); jr hvh(x)j)

+
h2

8
f c

�
vh(xs) � u� (xs); jr vh(xs)j

�
+

h2

8
f c

�
vh(xn ) � u� (xn ); jr vh(xn )j

�

+
h2

8
f c

�
vh(xe) � u� (xe); jr vh(xe)j

�
+

h2

8
f c

�
vh(xw) � u� (xw); jr vh(xw)j

�

+
h2

4
f c

�
vh(xm ) � u� (xm ); jr vh(xm )j

�

=
(h=2)2

4

X

~Q2T h= 2 ; ~Q� Q

X

x2N h= 2(Q)

f c
�
vh(x) � u� (x); jr vh(x)j

�
=

X

~Q2T h= 2 ; ~Q� Q

~T ~Q :

Thus
F c

h(vh) =
X

Q2T h

TQ �
X

~Q2T h= 2

T ~Q = F c
h=2(v h

2
): (2.73)

Proof of Proposition 2.4.9:

Let " > 0. Using Lemma 2.4.11we can �nd h1 > 0 such that for 0 < h � h1

and u�
h being the bilinear interpolation of u� (x i;j ); (i; j ) 2 I h on the grid of

meshsizeh
j F c(:; u� ) � F c(:; u�

h)j �
"
2

: (2.74)

Let
u �

h := (u�
h(x i;j )) (i;j )2I h = (u� (x i;j )) (i;j )2I h (2.75)
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Let
uh := argmin

v2 RN h � M h

F c
h(v ; u �

h)

and uh the bilinear interpolation of uh on the grid.

Lemma 2.4.10provides the existenceof m1 2 N, such that for every ~h =
h

2m ; m � m1 we have

F c(uh; u�
h) � F c

~h(u~h; u �
~h) +

"
2

; (2.76)

whereu~h and u �
~h

are the data of uh and u�
h attained at the nodesof the grid

with meshsize~h.

Lemma 2.4.12provides that

F c
~h(u~h; u �

~h) � F c
h(uh; u �

h): (2.77)

Inserting (2.77) in (2.76) gives

F c(uh; u�
h) � F c

h(uh; u �
h) +

"
2

: (2.78)

With (2.74) and F c
h(uh; u �

h) = F c
h(uh), sinceu�

h(x i;j ) = u� (x i;j ) for (i; j ) 2 I h

(see(2.75), we �nally get from (2.78) that

F c(uh; u� ) � F c(uh; u�
h) +

"
2

� F c
h(uh) + ":
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2.5 Implemen tation of the NCBV-Filter

In this Sectionwe describe the implementation of the NCBV-�lter, that is
the numerical minimization of

F c
h(u) = hn

X

(i;j )2I

f c(ui;j � u�
i;j ; jr hui;j j) (2.79)

for given data u � 2 RN � M on a �xed grid with N � M nodes,where

f c(� ; a) :=

(
� 2

2jaj + � jaj if
p

2� jaj > j� j;
p

2� j� j else:
(2.80)

The continuous functional corresponding to (2.79) is given by

F c(u) =
Z



f c(u � u� ; jr uj): (2.81)

In the �rst part of this Sectionwe considera steepest descent approach to
minimize F c

h(u).
In the secondpart of this Section, since we are interested in an e�cien t
implementation for �ltering images,we considera implicit FE-approach with
better algorithmic performancethan the steepest descent algorithm.

2.5.1 Steepest Descent

In the following we describe numerical implementations of the NCBV-�lter,
which arebasedon minimizing the discretefunctional F c

h(u) given by (2.79).

We begin with the one-dimensional case:

For practical applications, it is feasibleto claim invarianceof the functional
under the (simultaneous) transformations M (u1; : : : ; uN ) := (uN ; : : : ; u1)
and M (u�

1; : : : u�
N ).

To achieve this invariancewe usecentral di�erences as well as combinations
of left- and right-sided di�erences and derive three di�erent versionsof the
NCBV-�lter, which are comparednumerically in Chapter 4.
.

Let N > 1 and x i = h(i � 1); i = 1: : : N; h = L x
N � 1 be a equidistant grid on


 = [0; L x ].
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We recall Example2.4.6,wherewe usedcentral di�erences for jr h:j given by

jr hui j :=

8
>>>><

>>>>:

jui +1 � ui j
h

if i = 1;
jui +1 � ui � 1j

2h
for i = 2; : : : ; N � 1;

jui � ui � 1j
h

if i = N:

(2.82)

For the implementation wemakethe following modi�cations on the functional
F c

h(u): Sincef c(� ; a) in (2.80) is not di�erentiable at (� ; a) = (0; 0) and thus
F c

h(:) is not di�erentiable, we approximate f c(� ; a) by

f " (� ; a) =

(
j � j2"
2jaj + � jaj if

p
2� jaj > j� j"p

2� j� j" else

= min
�

j� j"
2jaj

;

r
�
2

�
j� j" + max

�
� jaj;

r
�
2

j� j"

� (2.83)

with jxj" =
p

jxj2 + "2; " > 0.
Note that f " (� ; a) is convex with respect to a.
Moreover, it can easilybe shown that assumptions(a5) and (a4) are satis-
�ed by f " (� ; a).

Moreover we use

jr hui j" :=

8
>>>><

>>>>:

jui +1 � ui j"
h

jui � ui � 1j"
h

jui +1 � ui � 1j"
h

if i = 1;

if i = N;

else

(2.84)

instead of (2.82), i.e. we consider f " (ui � u�
i ; jr hui j" ) instead of f c(ui �

u�
i ; jr hui j).

In Fig. 2.6 we plotted f " (� ; jaj" ).
Note that jr hui j" satis�es assumptions(a2) and (a3) if " = O(h).

We de�ne

F 1(u) :=
NX

i =1

f " (ui � u�
i ; jr hui j" ): (2.85)

The following Lemma statesthat F 1(u) ! F h(u) uniformly for " ! 0:
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Figure 2.6: Left: Plot of f (� ; a) (red graph) and f " (� ; jaj" ) (blue graph) for
� = 1 and " = 1. Right: Di�erence f " (� ; jaj" ) � f (� ; a) for � = 1 and " = 1.
We have f " (0; j0j" ) � f (0; 0) =

p
2�" =

p
2.

Lemma 2.5.1. Let

F h(u) =
NX

i =1

f c(ui � u�
i ; jr hui j)

(see Example2.4.6) and F 1(u) be de�ned as in (2.85). Then there existsC
independent from u suchthat

j F h(u) � F 1(u)j � C":

Proof:
From Lemma A.2.2 in Appendix A.2 we have that

�
�f " (� ; jaj" ) � f c(� ; jaj)

�
� � C"; (2.86)

whereC dependsonly on � .

Thus

j F h(u) � F 1(u)j �
NX

i =1

h
�
�f c(ui � u�

i ; jr hui j) � f " (ui � u�
i ; jr hui j" )

�
�

� C (L x + h)" = CL0 "

(2.87)



72 CHAPTER 2. NUMERICS

Note that from Example2.4.6we have that F h(u) satis�es assumption (a6):
For ~" > 0 there exists h1 > 0 such that for 0 < h � h1 uh 2 W 1;p(
) can be
found with

F (uh) � F h(u) +
~"
2

: (2.88)

Lemma 2.5.1provides that there exists " > 0 such that

j F 1(u) � F h(u)j �
~"
2

: (2.89)

Using (2.88) together with (2.89) it follows that

F (uh) � F 1(u) + ~":

Thus F 1(u) satis�es (a6) . Theorem 2.3.5 then shows that F 1(u) is con-
sistent with (2.81).

In Chapter 4 we show that minimizing F 1(u) results in someunsatisfactory
oscillationsin the numerical solutions,which we think is due to the smooth-
ing e�ect of central di�erences.

Weconsideralternative �nite di�erence schemesbasedon right and left-sided
di�erences. Let

jr r
hui j" :=

8
><

>:

jui +1 � ui j"
h

jui � ui � 1j"
h

for i = 1; : : : ; N � 1;

if i = N;
(2.90)

jr l
hui j" :=

8
><

>:

jui +1 � ui j"
h

jui � ui � 1j"
h

if i = 1;

for i = 2; : : : ; N:
(2.91)

Obviously jr r
hui j" and jr l

hui j" satisfy the assumptions(a2) and (a3) ,
if " = O(h).
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We de�ne

F 2(u) : = h
NX

i =1

f " (ui � u�
i ;

1
2

(jr hui j l" + jr hui jr" )) ; (2.92)

F 3(u) : =
h
2

f " (u1 � u�
1; jr r

hu1j" )

+
h
2

N � 1X

i =2

�
f " (ui � u�

i ; jr l
hui j" + f " (ui � u�

i ; jr r
hui j" )

�
(2.93)

+
h
2

f " (uN � u�
N ; jr l

huN j" ):

Obviously thesefunctionals also are invariant under transformation M (u);
M (u � ).

Note that F 2(u) is related to Example 2.4.7. Analogously to F 1(u) it can
be shown that F 2(u) is consistent with (2.81). F 3(u) is related to a one-
dimensionalversionof the functional for two dimensionsproposedin Section
2.4.2, for which we alsohave shown consistencywith (2.81).
The algorithmic performancesof F 1(u); F 2(u) and F 3(u) are comparedin
Chapter 4.

In the two-dimensional case let 
 = [0; L x ] � [0; L y].
The grid points are assumedto lie one a equidistant grid with meshsizeh
and grid nodes

x i;j =
�

(i � 1)h
(j � 1)h

�
; (i; j ) 2 I :

Weproposenumericalschemesbeinginvariant under rotation of the grid with
angles� 90� and 180� and under mirroring in vertical or horizontal direction.

For u 2 RN � M we de�ne

dxui :=

8
>>>><

>>>>:

ui +1 ;j � ui;j

h
ui +1 ;j � ui � 1;j

2h
ui;j � ui � 1;j

h

if i = 0;

for i = 1; : : : ; N � 1;

if i = M ;

dyui :=

8
>>>><

>>>>:

ui;j +1 � ui;j

h
ui;j +1 � ui;j � 1

2h
ui;j � ui;j � 1

h

if j = 0;

for j = 1; : : : ; M � 1;

if j = M ;
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and
jr hui j" :=

q
(dxui )2 + (dyui )2 + "2: (2.94)

We de�ne F 1(u) by

F 1(u) := h2
X

(i;j )2I

f " (ui;j � u�
i;j ; jr hui;j j" );

wheref " (� ; a) is de�ned as in (2.83).
For de�ning F 2(u) in the two-dimensionalcase,let K i;j � f 1; 2; 3; 4g; (i; j ) 2
I be de�ned as in (2.68)
and let

jr 1
hui;j j" =

1
h

�
�
�
�

�
ui +1 ;j � ui;j

ui;j +1 � ui;j

� �
�
�
�
"

for 1 � i < N ; 1 � j < M ;

jr 2
hui;j j" =

1
h

�
�
�
�

�
ui +1 ;j � ui;j

ui;j � 1 � ui;j

� �
�
�
�
"

for 1 � i < N ; 1 < j � M ;

jr 3
hui;j j" =

1
h

�
�
�
�

�
ui � 1;j � ui;j

ui;j � 1 � ui;j

� �
�
�
�
"

for 1 < i � N ; 1 < j � M ;

jr 4
hui;j j" =

1
h

�
�
�
�

�
ui � 1;j � ui;j

ui;j +1 � ui;j

� �
�
�
�
"

for 1 < i � N ; 1 � j < M :

where
�
�
�(a;b)T

�
�
�
"

=
p

a2 + b2 + "2.

We de�ne F 2(u) and F 3(u) by

F 2(u) := h2
X

(i;j )2I

f " (ui;j � u�
i;j ;

1
# K i;j

X

k2 K i;j

jr k
hui;j j" ):

F 3(u) :=
h2

4

X

(i;j )2I

X

k2 K i;j

f " (ui;j � u�
i;j ; jr k

hui;j j" ):

Note F 3(u) is related to the functional proposedin Section2.4.2,for which
we have shown consistencywith (2.81). Showing j F 3(u) � F h(u)j � C"
analogouslyto the proof of Lemma 2.5.1, it follows that F 3(u) is consistent
with F (u).

For the following let F h(u) beoneof the functionalsF 1(u), F 2(u) or F 3(u)
and

r F h(u) =
�

@F h(u)
@ui;j

�

(i;j )2I

:
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The steepest descent algorithm for minimizing F h(u) is given by:

Algorithm A

1. Select starting vector u (0) and step size � t > 0.
2. for s = 0: : : steps� 1:

u(s+1) = u (s) � � tr F h(u (s) ).

The starting point is arbitrary. It is feasibleto set u0 := u � .

The step size � t has to be chosensmall enoughto provide a decreasingof
F h(u (s)) during the iteration, which can be checked automatically by testing
c := F h(u (s+1) ) � F h(u (s) ). While c > 0, � t is replacedby � t

2 and u (s+1) is
re-calculated.

For decreasingthe computational e�ort, it is feasibleto usecertain criteria
to stop the steepest descent at a point, when the iterated reasonablywell
approximates the minimizer. We proposethree di�erent stopping criteria:

Criterion a) Using a step size control of F h(u (s) ) � F h(u (s� 1)) for s =
1: : : steps� 1, the step size � t is decreasedto assert this inequality.
We stop the iteration if � t < � t tol .

Criterion b) Sincethe gradient of F h(u) vanishesfor a minimizer, the iter-
ation at steps might bestoppedif the norm of the gradient jr F h(u (s))j
is small enough,that is jr F h(u (s))j < � F tol .

Criterion c) The iteration might be stopped if the update ku (s+1) � u (s)k
in the current step s is small enough,ku (s+1) � u (s)k < � utol .

Incorporating stopping criteria a) -c) we derive the following procedure:

Algorithm B

1. Set steps>0, � t tol ; � F tol and � utol .
2. Select starting vector u (0) and initial step size � t0 > 0.

Set � t = � t0

3. for s = 0: : : steps� 1:
F old = F h(u (s) ).
do f

us+1 = us � � tr F h(u (s) )
F new = F h(u (s+1) )
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if ( F new > F old): � t  � t=2
if � t < � t tol : stop.

g while F new > F old,
if jr F h(u (s+1) )j < � F tol or ku (s+1) � u (s)k < � utol : stop

Hereby a  b denotesthe assignment of the value b to variable a.

2.5.2 A Finite Elemen t Approac h

The steepest descent method provides good approximations of the minimiz-
ers of F h(u). The drawback of the steepest descent is its slow convergence.
In this sectionwe provide an alternative algorithm giving a trade-o� between
the quality of the results and computational e�ciency .

In this sectionwe consideronly the two dimensionalcase.

The FE ansatz is basedon the continuous NCBV-functional, evaluated on
piecewisebilinear functions.
Let Th be the set of the (closed)quadratic elements Q of a regular triangula-
tion of 
 basedon a grid with meshsizeh. The set of grid nodesis denoted
by Nh = f x i;j j(i; j ) 2 I g.
By Nh(Q); Q 2 Th we denote the set of nodes of element Q. Let Vh(
)
be the spaceof continuous and element-wise bilinear functions. A function
v 2 Vh(
) is identi�ed with a vector v 2 RN � M .

Additionally we de�ne a set of basisfunctions on the spaceof element-wise
linear splineson 
 by

' i;j 2 Vh(
) ;

' i;j (xk;l ) =

(
1 if i = k and j = l;

0 else:

for (i; j ) 2 I , and denote

Bh := f ' i;j ; (i; j ) 2 I g:

For given u � let u� 2 Vh(
) be such that u� (x i;j ) = u�
i;j . We consider the

function F " (u); " > 0 given by
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F " (u) : Vh(
) � Vh(
) ! R+
0

F " (u) =
Z



f " (u(x) � u� (x); jr u(x)j" ) dx (2.95)

wheref " (� ; a) is de�ned as in (2.83).
Sincefor a minimizer u 2 Vh(
) of F " (u) the directional derivativessatisfy

d
dt

F " (u + t' ) = 0 8 ' 2 Bh;

it follows with (2.83) that

Z



min

 
1

jr u(x)j"
;

p
2�

ju(x) � u� (x)j"

!

(u(x) � u� (x)) ' (x)

+ max
� �

� �
ju(x) � u� (x)j2"

2jr u(x)j2"

�
; 0

�
r u(x)r ' (x)

jr u(x)j"
dx = 0 (2.96)

for all ' 2 Bh .
Let ui;j = u(x i;j ) ; (i; j ) 2 I and u = (ui;j )(i;j )2I . With u =

P
(i;j )2I ui;j ' i;j

and u� =
P

(i;j )2I u�
i;j ' i;j and using the abbreviations

a(u)(x) = min

 
1

jr u(x)j"
;

p
2�

ju(x) � u� (x)j"

!

; (2.97)

b(u)(x) = max
� �

� �
ju(x) � u� (x)j2"

2jr u(x)j2

�
; 0

�
1

jr (x)j"
; (2.98)

it follows by setting ' = ' k;l ; (k; l) 2 I in (2.96) that for every (k; l) 2 I .

X

(i;j )2I

ui;j

Z



a(u)(x)' i;j (x)' k;l (x) + b(u)(x)r ' i;j (x)r ' k;l (x) dx

=
X

(i;j )2I

u�
i;j

Z



a(u)(x)' i;j (x)' k;l (x) dx:

(2.99)

We approximate a(u) and b(u) by element-wise constant functions ~aQ(u) and
~bQ(u); Q 2 Th, wherejr u(x)j" is evaluated in the midpoint of each cell Q.
With this approximation and by de�ning

(MQ) ij kl :=
Z

Q
' i;j (x)' k;l (x) dx and (LQ) ij kl :=

Z

Q
r ' i;j (x)r ' k;l (x) dx
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for Q 2 Th, (2.99) readsas
 

X

Q2T h

~aQ(u)MQ + ~bQ(u)LQ

!

u =

 
X

Q2T h

~aQ(u)MQ

!

u � : (2.100)

This systemis linearizedin the following way: Let ~u 2 RN � M be an approxi-
mation of the solution of (2.100). Approximating ~aQ(u) and ~bQ(u) by ~aQ(~u)
and ~bQ(~u), respectively, we derive the linear equation

 
X

Q2T h

~aQ(~u)MQ + ~bQ(~u)LQ

!

u =

 
X

Q2T h

~aQ(~u)MQ

!

u � : (2.101)

To solve (2.100) we then apply a �xed point iteration as follows:

Algorithm C

1. Set u (0) := u �

2. For s = 0: : : steps� 1:
Solve (2.101) with ~u := u (s) .
The solution is denoted by u (s+1) .
if ku (s+1) � u (s)k < � utol : stop.

For solving (2.101) the Conjugate-Gradient (cg)-method is used.

Numericalexperiments have shown that the solutionsu (s) ; s = 0: : : steps� 1
show oscillations. We think that theseoscillationsare causedby the degen-
eration of the PDE (2.101) in the caseof ju(x) � u� (x)j being large.

In order to weaken such oscillations, instead of (2.101) the equation

 
X

Q2T h

�
1 + � t ~aQ(~u)

�
MQ + � t ~b(~u)LQ

!

u =

 
X

Q2T h

MQ

!

~u + � t

 
X

Q2T h

~a(u0)MQ

!

u � ; (2.102)

is usedfor given ~u 2 RN � M and � t > 0:
As for the steepest descent, we introducea step sizecontrol for � t:
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Algorithm D

1. Set s = 0 and u (0) := u �

2. Set Fold = F h(u (s) ).
3. Solve (2.102) with ~u = u (s) .

The solution is denoted by u � .
4. Set Fnew = F h(u � )

If Fnew � Fold:
u(s+1) := u � , s  s + 1
Fold  Fnew

else:
� t  � t=2

if s � steps or � t � � t tol : stop.
5. if u (s+1) = u (s) stop, else go to step 3.

We use
F h(u) = h2

X

(i;j )2I

f " (ui;j � u�
i;j ; jr hui;j j" ):

Sincewe usethe cg-method for solving (2.102),which is an iterativ e method,
algorithms C and D consistof two nestediterations. Werefer to the iteration
s  s+ 1 asthe outer iteration, and to the iteration of the cg-method asthe
inner iteration.

Besidea maximal number of iterations for the cg-method weprovide a thresh-
old on the residual of (2.102). The inner iteration is stopped if the residual
falls below this threshold. In the next step of the outer loop the residual
for u(s) is checked at the beginning of the inner iteration and sinceit is still
below the given threshold, no inner iteration stepsare performed. We then
have u (s+ i ) = u (s) ; i � 0 and the outer iteration can be terminated.
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Chapter 3

Examples of Denoising
Pro cedures

In this sectionwe present two examplesof astronomicalapplications, where
denoisingplays an essential role.

3.1 Detection of Arcs and Arclets

An observable e�ect of concentrated mass in the universe is gravitational
lensing:
Light passingby a massive object, for examplea galaxy, is bendedby the
gravitational force acting on the photons. Similar to an optical lens, the
gravitational lensinga�ects the light from objects far behind the mass.The
imagesof theseobjects are deformedby the bendingof the light and appear
as arcs and arclets. Often multiple arcs of one and the samebackground
object can be observed. In the caseof an ideal symmetrically shaped lens
with a sourcedirectly behind the lensin the observer's point of view, socalled
Einstein rings, i.e. completerings around the gravitational lens,appear.
Consideringthe gravitational lensingof galaxies,thesefar objects typically
are other galaxies,referred to as background galaxies. The �rst gravitation-
ally lensedgalaxieswere detectedonly in 1986(see[39, 51]).
The e�ect of gravitational lensingcan alsobe observed in a weaker form for
stars and planets.

Galaxiesare known not to be homogeneouslyspreadin the universe,but to
arrangein �laments. At intersectionsof these�laments so called clustersof
galaxiescanbe found, i.e. groupsof galaxiesbuilding a dynamically bounded
systemwith a high mass.Estimatesof the total massof galaxy clusters have

81
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show that only � 5% of the massis contributed by the matter of stars and
planets. The remaining part of the massis given by gas(� 15%) and the so
called dark matter (� 80%).

Figure 3.1: By gravitational lensinglight from a background galaxy passing
the cluster of galaxies is bended. Arc-shaped images of the background
galaxy around the cluster becomevisible for the observer.

For clusters of galaxiesoften a strong e�ect of gravitational lensing can be
observed.
Fig. 3.1 illustrates the e�ect of gravitational lensingfor a cluster of galaxies.
Fig. 3.2 shows an image of the galaxy cluster RXJ1347-1145,where gravi-
tational lensing is observed. Four arcs which can be visually detected are
marked with boxesby hand.

The e�ect of gravitational lensingof galaxy clusters is usedas an universal
tool in astrophysical research:

� The light sourcesa�ected by the gravitational lensing in generalare
to far away (showing up to a redshift z � 5, see[23]) to be studied
even with large telescopes. Gravitational lensingprovides information
on distant galaxiesand thus canbe usedfor studiesof galaxy evolution
(see[48, 43]) and galaxy populations [22].

� Gravitational lensingis oneof the few astrophysicalprocesses,in which
dark matter is involved in an observable manner. Studying the lensing
properties of galaxy cluster allows to estimate the clusters total mass
[21, 52, 40]. Togetherwith information about the gasand star matter
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Figure 3.2: Detail of a VLT observation of the galaxy cluster RXJ1347-1145
(from [11]) The imagehasa sizeof 2285� 2388pixels.

the fraction of dark matter is deduced. Moreover the spacial distri-
bution of masscan be estimated. It is assumedthat galaxy clusters
represent the typical massfraction (baryonic / non-baryonic matter)
of the universe,thus cosmologicalparameterssuch asthe massdensity

 M and total massand energydensity 
 tot can be estimated.

� The statistics of arcs, determined in systematic searches (surveys),
where large areasof the sky are investigated,helps to distinguish be-
tweenthe cosmologicalmodelsdiscussedin literature [2, 33].

In image data, arcs show up as very thin and faint structures. Under non-
ideal observation conditions they are easilydispersedand disappear into the
background. Even with ideal conditions their intensity often lies just above
the background level. The detection of arcs is complicatedby the fact, that
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Figure 3.3: Detailed view of the imageof cluster RXJ1347-1145showing two
bright and two or three faint arcs.

astronomicaldata contain noise(e.g. Poissonnoisedue to photon count and
readout noiseof the CCD-sensors),sothat the distinction betweenfaint arcs
and background noiseis di�cult even for the human eye (seeFig. 3.3).

Often large data setsare to be searched, which can be done by human eye
only in a time consumingmanner. Thus a tool for automatic detection of
arcs is needed.
In [37] we proposedan algorithm to automatically detect arcs and arclets.
Sincethe detectionprocedureis basedonly on geometricalaspects,this algo-
rithm may alsobe usedto detect any thin and elongatedsourcesin arbitrary
imagedata.

3.1.1 The Algorithm

The proposedalgorithm consistsin four steps:

1. Histogram modi�cation (scaling)

2. anisotropic di�usion (smoothing)

3. Object �nding (detection)

4. Selectionof arcs (classi�cation)

Details on the algorithm can be found in [37].
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For the following, we concentrate on the step of anisotropic di�usion:
To detect arcs,it turned out to be necessaryto remove noisecontained in the
astronomicaldata to reducefalsedetections,i.e. falseclassi�cation of noise
structures as objects. Thus the denoisingstep hasa strong in
uence on the
quality of detections. In order not to dispersefaint objects by the smoothing
process,we decidedto use anisotropic di�usion, which mainly smooths in
parallel direction to edgescontained in the imageand thus preservesedges.
Details on anisotropic di�usion can be found in [54].

Let us describe the anisotropic di�usion model in the context of Bayesian
statistics, following [13]:
We consideragain the model of additive Gaussiannoise,see(1.7):

Let u � = (u�
i;j )(i;j )2I be somedata on a grid of N � M nodes. .

The data are assumedto be corrupted by Gaussiannoise,i.e.

u�
i;j = u0

i;j + � i;j ; (i; j ) 2 I ;

where u0 2 RN � M are noise-freedata and � i;j ; (i; j ) 2 I is i.i.d. Gaussian
noisewith zeromean.

Moreover, let v 2 C1(
) be somearbitrary function and Av : 
 ! Sym2,
whereSym2 is the spaceof symmetric 2 � 2 matrices.

Moreover, we assumethat Av(x) has the eigenvalues (1; g(jr v(x)j), where
g(s) : R+

0 ! (0; 1] is a monotonouslydecreasingfunction with g(0) = 1 and
lims!1 g(s) = 0. We denote the corresponding normalized eigenvectors by
� 1(x); � 2(x).

We de�ne the following imageprior:

p(u) = cexp

0

@�
1

2� 2
prior

X

(i;j )2I

jAv(x i;j ) r hui;j j2

1

A ;

whereu 2 RN � M and r hui;j ; (i; j ) 2 I is de�ned by

r hui;j :=
1
h

�
(ui +1 ;j � ui;j ; ui;j +1 � ui;j )T if i < N; j < M ;

0 else.

p(u) servestwo purposes:
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1. In homogeneousregionsof v, i.e. where r v = 0, we have Av(x) = Id
and thus the prior is similar to the prior de�ned in (1.44). In particular
we assumea Gaussiandistribution of jr hui;j j in theseregions.

2. In regions,wherer v >> 1 and the secondeigenvalueof Av(x) becomes
small, the prior is mainly basedon the assumptionthat hr hui;j ; � 1(x i;j )i
is Gaussian distributed. In particular, we assumethat on average
r hui;j is parallel to � 2(x i;j ).

Thus by providing function v � u0, where u0 is an interpolation of the are
the noise-freedata knowledgeabout homogeneousregionsas well as about
edgesand their direction in the imageu0 are usedin prior p(u), referred to
as structural prior [13].
Let us supply a concreteform of Av(x):

To �nd an approximation of u0, we consideru� (x) being an interpolation of
u � on 
 and set v(x) = (u� (x)) � , where(:) � ; � > 0, denotesthe convolution
with the Gaussiankernel K � (x) := 1

4� � exp(� x2

4� ).

Let the structure tensor J � (x) be de�ned by

J0(x) :=
�

(dxv)2 dxv dyv
dxv dyv (dyv)2

�

in the caseof � = 0 and
J� (x) = (J0)� (x)

for � > 0, where(:) � denotesthe component-wise convolution with kernelK � .
Let � �

1 (x); � �
2 (x) be the normalizedeigenvectorsof J � , with the corresponding

eigenvaluesorderedwith increasingabsolutevalue. We set

Av(x) :=
�

� �
1 (x) � �

2 (x)
�

�
1 0
0

p
g(jr v(x)j)

� �
� �

1 (x)
� �

2 (x)

�

with
g(s) =

1

1 + s2


 2

; 
 > 0:

Since we assumeadditive Gaussiannoise in the data u � , the conditional
probability p(u � ju) is given as in (1.10). Togetherwith the above prior we
derive the following MAP estimator:

argmin
u2 RN � M

� log p(u � ju)p(u)

= argmin
u2 RN � M

X

(i;j )2I

�
(ui;j � u�

i;j )2 + � jAv(x i:j )r hui;j j2
� (3.1)



3.1. DETECTION OF ARCS AND ARCLETS 87

with regularization parameter � > 0. The optimalit y condition for the min-
imizer uy of (3.1) then is that

X

(i;j )2I

(uy
i;j � u�

i;j )� i;j � � hAv(x i;j )r huy
i;j ; Av(x i;j )r h � i;j i = 0 (3.2)

holds for every � 2 RN � M .
With

(r h)� zi;j =:
1
h

�
(zi;j � zi � 1;j ; zi;j � zi;j � 1)T if i > 1; j > 1;

0 else

using that
X

(i;j )2I

hAv(x i;j )r huy
i;j ; Av(x i;j )r h � i;j i = �

X

(i;j )2I

(r h)�
�

(Av(x i;j ))2r huy
i;j

�
� i;j

it follows from (3.2) with

� ij =

(
1 if i = k; j = l

0 else
; (i; j ) 2 I ;

that for (k; l) 2 I ,

uy
k;l � u�

k;l � � (r h)�
�

Av(xk;l )2r huy
k;l

�
= 0: (3.3)

We interpret (3.3) as an explicit step with step size � t = � of a discrete
schemefor an anisotropic di�usion process

@u
@t

� r �
�
D (u) � r u

�
= 0

with di�usion tensor Dv(x) = (Av(x))2 (see[54]).

3.1.2 Results

To test the performanceof the proposeddetection algorithm we use three
di�erent test images. The �rst data set, already introduced in Fig. 3.2 con-
sistsof 2285� 2388pixels with intensities ranging from � 8:49 up to 700:49.
To visualize the data, we already applied histogram modi�cation, see[37].
The histogram of unscaledintensities is given in Fig. 3.4.
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Figure 3.4: Histogram of the �rst test image with intensities in the range
[� 8:49; 700:49]. The gray bar indicatesthe intensity rangewherearcscan be
found.

The secondand the third test image, observations from the Hubble Space
Telescope of the A1689cluster shown in Fig. 3.5,areof size2048� 2048with
intensity ranges[0; 19559:8] and [0; 9314:26], respectively. The histogramsof
the secondand third test imageare omitted.
We demonstrate the advantages of anisotropic di�usion �ltering. Fig. 3.6,
right, shows the result of �ltering the �rst test image with parameters� =
2; � = 9; 
 = 10� 4 and � = 15. For the readersconveniencewe also plotted
the un�ltered (only histogram modi�ed) data (Fig. 3.6, left).

To investigate the enhancinge�ect on weak structures we zoom into a part
of the imageshown in Fig. 3.7, top.
For comparisonwe alsoapplied Gaussianconvolution (kernel K � (x), � = 7),
seeFig. 3.7 (middle). Fig. 3.7, bottom, shows the corresponding part of the
image�ltered with anisotropic di�usion.

It is observed that both �ltering techniques are able to remove the noise
contained in the original data, but only anisotropic di�usion provides the
preservation of edges.This concernsboth strong and weak structures in the
image. Using Gaussianconvolution leadsto a dispersion of the objects in-
stead,which would a�ect the afterwards detection procedure.

The arc detection algorithm is applied to the three test images(see[37] for
the choiceof parameters.)
During classi�cation, only objects with an eccentricit y larger than a given
threshold cecc > 0 are retained.
For the �rst test imagearcs are selectedwith eccentricit y above cecc = 0:7.
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Figure 3.5: The secondand third test image showing a detail of a Hubble
SpaceTelescope(HST)-observation of the galaxy cluster A1689. Both images
have size2048� 2048.

Fig. 3.8 shows the detectedobjects. The most elongatedobjects are listed in
Table 3.1. Additionally the masscenter, size (in pixels) and eccentricit y is
given. The objects are indexed with decreasingorder of eccentricit y. These
indicesare inserted by hand in Fig. 3.8 to mark the corresponding objects.

It canbe observed that the automatic detectionprocessbesidesthe four arcs
obviously recognizableafter histogram modi�cation �nds a large number of
arc candidates,with many of them di�cult to detect by human eye.

Note that arc candidate no. 3 is detected although being a relatively faint
structure. For candidateno. 4 the algorithm wasableto separatethe arc from
a nearby foreground object. Objects no. 1,2 and 5 seemto approximately
lie on circle, on which other faint structures are detected,for exampleleft to
object 13.

For a de�nite decision,if detectedarc candidatesare results of gravitational
lensing,additional information on the redshift is necessary.

Fig. 3.9 shows the results of applying the algorithm to the secondand third
test image. Again we observe a large number of detectedarcsnot obviously
detectedby human eye. Additionally , giant arcsare contained in the image
data. These consist of multiple local maxima with gaps in between. Due
to the segmentation strategy several adjacent parts are detectedseparately.
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Figure 3.6: Left: Histogram modi�ed image of the cluster RXJ1347-1145.
Right: Image with anisotropic di�usion �ltering applied. Comparedto the
unsmoothed imagethe noiseis considerablyreduced. Parameter setting for
the �ltering: � = 15, 
 = 0:0001,� = 2 and � = 9;

They are mergetogether in a post processingstep.

3.1.3 Comparison with other Soft ware

In [37] we comparedthe proposedalgorithm to a software package named
SExtractor (\source-extractor"), written by E. Bertin (see[9, 10]). This
package provides an astrophysical general purpose tool for extraction of
sourcessuch as stars and galaxiesand is widely used in astrophysics. In
contrast our software is particularly designedfor the detection of thin and
elongatedobject, e.g. arcs,especially in view of faint structures.
Although both tools are designedfor di�erent areasof application, similar
components in the implementation can be identi�ed: SExtractor usesback-
ground estimation to distinguish betweenobjects an background, wherewe
usehistogram modi�cation. Instead of anisotropic di�usion usedin our al-
gorithm, SExtractor usesGaussianconvolution for denoisingthe data. The
processof detection, described in the SExtractor manual (see[9]) refersto
the object �nding proceduredescribed above. Finally a deblendingis used
to separateclose-by objects, where a merging processis applied in our al-
gorithm. SExtractor doesnot perform a selectionof objects with speci�ed
properties, such as shape attributes, but a post-processingcould be easily
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Figure 3.7: Zoom of Fig. 3.2Top: histogrammodi�ed data, middle: Gaussian
�ltered image(kernelK � with � = 7), bottom: image�ltered with anisotropic
di�usion with the parameters: � = 15, 
 = 0:0001, � = 2 and � = 9. In the
Gaussian�ltered image (middle) the edgesare not preserved well, i.e. the
arcsget dispersed,while anisotropic di�usion (bottom) maintains the edges
and reducesthe noiseat the sametime.

added since geometrical information about the objects is provided to the
user.

The results presented in [37] indicate the following di�erences between the
two algorithms:

� SExtractor usesa lower segmentation threshold,sothat largerareasof
the objects are detected. In somecasesan undesiredmerging of close-
by objects can be observed, wherethe afterward deblendingprocedure
fails to separatethe objects.

� The result of our algorithm providesa moreregularshapeof the objects,
which is due to the useof anisotropic di�usion.

In [29] our algorithm is comparedto another recently developed algorithm
for detecting arcs. In a study on simulated gravitational lensingthe fraction
of arcsdetectedunder the in
uence of restrictive observational e�ects to the
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Figure 3.8: Result of applying the detectionalgorithm to the �rst test image.
Only objects with eccentricit y above cecc = 0:7 were selected.Objects listed
in Table 3.1. are marked with the accordingindices.

number of arcsdetectedwithout observational e�ects is determinedfor both
algorithms. The overall result is that our algorithm detectsa larger fraction
of arcsthan the other software, but the latter due to a lower thresholding for
segmentation is able to recover larger parts of the arcs,especially for \giant
arcs".
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Masscenter Size(Pixel) Eccentricit y
1 (593,749) 768 0.978
2 (188,177) 603 0.956
3 (595,899) 143 0.943
4 (794,440) 241 0.942
5 (320,144) 196 0.928
6 (842,901) 181 0.901
7 (141,328) 27 0.876
8 (130,819) 95 0.871
9 (165, 61) 52 0.866
10 (223,871) 86 0.864
11 (488,103) 65 0.854
12 (151,659) 32 0.845
13 (677,260) 44 0.840

Table 3.1: Listing of the most elongatedobjects detectedin test imageone,
providing position, object size (number of pixels) and eccentricit y of each
object.

Figure 3.9: Left: Result of applying the detection algorithm to the second
test image. Left: Result of applying the detectionalgorithm to the third test
image.
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3.2 Robust Reconstruction from Chopp ed and
No dded Data

Ground basedastronomy observations in infrared (IR) wavelengthareseverely
a�ected by atmospheric and telescopicthermal noise. The common ap-
proach for noisereduction in IR observations is to usechoppingand nodding
(see[18, 44]).
The idea is to provide referencesignalsfrom di�erent positions in the sky.
Sincethe noiseis rather varying in time than in space,it can be reducedby
taking the di�erence between the signal from the observed sourceand the
referencesignals.

AB CB A

Chopping & NoddingChoppingOriginal Position

Primary
Mirror

Mirror
Secondary

Optical
Axis

Positions A

Figure 3.10: The procedureof choppingand nodding. Left: original position
of the telescope, pointing at a position A. Middle: tilting the secondary
mirror provides a secondarysignal from position B by changing the optical
axis: Right: After moving the telescopepoints at a third position C, a second
chopping provides another signal from position A.

By the processof choppingthe secondarymirror of the telescope is tilted by
a certain angleto derive a referencesignal. Let A denotethe position, where
the telescope is pointing beforechopping, with signal S1 recordedfrom that
position. By B = A � H we denote the position after chopping, and by S2

the corresponding signal. H is called choppingthrow or choppingamplitude.
By chopping, atmosphericnoisein the recordeddata, referred to as back-

ground noise in the following, is reduced. Chopping doesnot satisfactorily
reducethe thermal noiseproducedby the telescope itself, referredto asdark



3.2. RECONSTRUCTION FROM CHOPPED AND NODDED DATA 95

noise, for the following reason: Tilting the secondarymirror has an e�ect
on the optical path lengths of the light, i.e. the length of the path which
light travelsinsidethe telescope. Sincethe optical path lengthsdi�er for two
signalsS1 and S2, the thermal emissionof the telescope acts di�erently on
both signals.

To reducedark noise,a secondreferencesignalwith the sameoptical path as
the original signal is required. This signal is obtained by moving the whole
telescope, referred to as nodding. Hereby for the standard approach, the
position the telescope is pointing at after moving, denoted by C, matches
C = A + H (referred to as parallel choppingand nodding in literature). De-
tails on the reduction of atmosphericand telescopicnoiseby chopping and
nodding can be found in [25], sections\Observing Strategies"and \Analyti-
cal Expressions",and in [46], section4.4.
We denote the signal from referenceposition C by S3. After the nodding
procedurea secondchopping is performed. By the special choice of C the
telescope then points againat position A, from which another signaldenoted
by ~S1 is recorded. On the whole, two signalsfrom the object and two refer-
encesignalsare available.
Fig. 3.10 illustrates the telescope positions.

Modi�cations of the proceduredescribed above, for exampleorthogonal di-
rections for chopping and nodding, alsoare discussedin literature, see[38].

Note that chopping and nodding is performedin a rapid sequence.

When observingpoint-lik e structures, the chopping amplitude often can be
chosenin a way that the referencepositions cover empty sky outside the re-
gion of interest. A reconstruction processthen is not required. However, in
practice, when objects under investigation are extended,for exampleplane-
tary nebulae,or have other objectsclose-by, the referencepositionsin general
match non-empty regionsand a reconstructionstep becomesmandatory.

The reconstructionfrom chopped and noddeddata was �rst discussedin [4],
wherea Fourier-basedmethod was proposed. In the papersof Bertero et al.
[6, 7, 5, 8] iterativ e reconstructionmethods are discussed.Recently, Chan et
al. have proposeda reconstruction method basedon wavelet decomposition
[15].

Experiments have shown that noisestill inherent in the data after chopping
and nodding, severely a�ects the reconstruction process,see[30]. It was
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pointed out that robust reconstructionmethods are needed.

In [36] we proposedtwo di�erent methods providing such robustness.
Beforegoing into detail, let us give a continuousdescription of the problem,
following Bertero et. al. [5, 8]. The main di�erence is that Bertero assumes
vertical choppingdirectionsafter appropriaterotation of the data. Weextend
the conceptto generalamplitudes h 2 R2 n f 0g. In particular this easesthe
numerical treatment of multiple chopped data setswith choppingamplitudes
being not parallel to each other.
Let 
 denote a section of the sky under observation. With an appropriate
projection to R2, we assume
 = [0; L x ] � [0; L y].
For each point x 2 
 , the data recordedat x are

f (x) = S1 + ~S1 � S2 � S3

and the the brightnessintensity distribution u : 
 ! R to be reconstructed
from the data ful�lls

2u(x) � u(x � H ) � u(x + H ) = f (x); x 2 
 ; (3.4)

We assumeu to be not-negative, referredto asconstraint of non-negativity.
Note that (3.4) involvesfunction valuesof u(x) in the domain


 H := 
 [ f xjx + H 2 
 or x � H 2 
 g:

We de�ne the operator

I H : L2(
 H ) ! L2(
)

u ! I H (u)(x) := 2u(x) � u(x + H ) � u(x � H )

where X := L2(
 H ) and Y := L2(
) are the spacesof square integrable
functions on 
 H and 
, respectively. With this notation (3.4) now can be
rewritten as operator equation

I H (u) = f : (3.5)

Note that for u 2 L 2(
 H ); f 2 L2(
) in generalwe do not have point evalua-
tion, i.e. u(~x) and f (~x) areuniquely de�ned up to null sets. For the chopped
and noddeddata we have that they areachieved by counting photonshitting
the small detector areasof the CCD-sensor. Therefore we assumethat we
have point evaluation u(~x) and f (~x) for ~x on a �xed grid in 
, corresponding
to the positions of the CCD-elements.
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The problem is discretizedin the following way:

Let H = (Hx ; Hy). Without lossof generality weassumethat H x � 0; Hy � 0
in the following.
Let (x i ; yj ) 2 
 ; (i; j ) 2 I be the sampling points (pixel positions of the
CCD-sensor),de�ning a rectangular grid on 
. Without loss of generality
we assumethe cell length to be 1.
Let

u := (ui;j )(i;j )2I = (u(x i ; yi )) (i;j )2I

f := (f i;j )(i;j )2I

With u weassociatean bilinear interpolatedfunction u: Let (x; y) 2 [x i ; x i +1 )�
[yi ; yi +1 ), then

u(x; y) :=
X

s;t=0 ;1

ws;t � ui + s;j + t

where

! 0;0(x � x i ; y � yj ) := (1 � (x � x i )) � (1 � (y � yj )) ;
! 1;0(x � x i ; y � yj ) := (x � x i ) � (1 � (y � yj )) ;
! 0;1(x � x i ; y � yj ) := (1 � (x � x i )) � (y � yj ) ;
! 1;1(x � x i ; y � yj ) := (x � x i ) � (y � yj ) :

(3.6)

If we take u � 0 on 
 h n 
 the resulting discretizedsystemof (3.5) is

AH u = f ; (3.7)

whereAH is an N M � N M tensor with coe�cien ts

aij kl :=

8
>>>><

>>>>:

2 if i = k; j = l
� ! 0;0(r x ; r y) if jk � i j = i x ; jl � j j = i y ;
� ! 1;0(r x ; r y) if jk � i j = i x + 1; jl � j j = i y ;
� ! 0;1(r x ; r y) if jk � i j = i x ; jl � j j = i y + 1;
� ! 1;1(r x ; r y) if jk � i j = i x + 1; jl � j j = i y + 1:

Here i x and i y denotethe integer parts of H x and Hy, respectively, i.e. i x =
bHxc and r x := Hx � i x , analogouslyfor i y ; r y.

Interpreting u and f as vectors (by re-numbering the grid points x i;j ) and
AH as matrix, we seethat AH is symmetric and positive de�nite and thus
(3.7) hasa unique solution.
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AssumingGaussiannoisewith variance� 2 in the data f , we have

p(f ju) � c exp

 

�

P
(i;j )2I jAH (ui;j ) � f i;j j2

2� 2

!

:

Thus minimizing (3.7) is a maximum likelihood estimation [42].

Three di�erent types of reconstruction methods are discussedin literature.
Theseare Fourier-basedmethods (see[4]), iterativ e methods (see[5, 8]) and
a wavelet-basedapproach proposedby Chan et al. [15]. A detailed overview
over thesemethods can be found in [36].
Let us brie
y describe two iterativ e methods proposedby Bertero et al. (see
[5, 8]):

The �rst, herereferredto asmethod (A), is the constraint Landweber method
reading as

u(0) = 0
for s = 1: : : steps:

u(s) = P+

�
u(s� 1) + � AT

H

�
f � AH u(s� 1)

� �

whereP+ is the projection operator onto the setof vectorswith non-negative
entries (each negative entry is set to zero), and � is an adequatelychosen
positive relaxation parameter.

The secondmethod is the projected Lavrentiev iteration, herereferredto as
method (B), de�ned by

u(0) = 0
for s = 1: : : steps:

u(s) = P+

�
u(s� 1) + �

�
f � AH u(s� 1)

��
:

Both iterativ emethodswork reasonablye�cien tly if the choppedandnodded
data are only distorted by a small amount of noise. In this case,the results
are qualitativ ely comparableto those obtained with the Fourier methods.
However, the iterativ e aswell as the Fourier methods su�er from robustness
problemswith respect to high noisedistortions.

3.2.1 Robust Reconstruction

Numerical simulations (seeSect. 3.2.2) show that for data severely a�ected
by noise arti�cial structures ariseduring the reconstructionprocessfor any
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of the methods mentioned above.

To overcomethis problem, we proposeto combine iterativ e reconstruction
methods with a median �ltering technique (see[42]), applied after each it-
eration. Median �ltering is the method of choice since it properly removes
arti�cial structures and canbe implemented in an e�cien t way (see[49,50]).

The median of a set f v1; : : : ; vng in ascendingorder is de�ned as the value
vk for n odd, wherek satis�es 2k + 1 = n and 1

2(vk + vk+1 ) for n even, where
k satis�es 2k + 2 = n, respectively. In median �ltering each value ui 0 ;j 0 is
replacedby the medianvalueof the setof valuesin a neighborhood of (i 0; j 0),
given by

f ui;j j ji � i0j � m and jj � j 0j � mg

for somem > 0, e.g. m = 1; 2; 3.

We proposethe following variant of method (A) de�ned by

u(0) = 0
for s = 1: : : steps :

1. u (s) = P+

�
u(s� 1) + � AT

H

�
f � AH u(s� 1)

��

2. Apply the median filter to u (s) .

The variant of method (B) is de�ned accordingly.

This strategy is related to that used for the wavelet approach (see [15]),
where wavelet thresholding is applied for denoising after each step of the
Landweber method.

Note that the matrix AH is symmetric and positive de�nite. Therefore for
solving (3.7) the Conjugate Gradient (cg) method can be used. It has the
advantage of being faster convergent than the Landweber and Lavrentiev
method. However, due to faster convergencethe reconstructionmethod then
is lessstableto noise. To increasestabilit y we proposesubsequently applying
onestep of the cg-method followed by median �ltering.

The corresponding method, referred to as the cg-based method, reads as
follows:
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u(0) = 0
for s = 1: : : steps :

1. Apply one step of the cg-method with
initial vector u (s� 1)

2. Denoting the result by ~u(s) ,
we replace ~u(s) by P+ ~u(s) to meet the
constraint of non-negativity.

3. Weapply the median filter to ~u(s)

to achieve iterate u (s) .

The constraint of non-negativity is necessaryto avoid artifacts in the recon-
struction.

In [4] and [7] it has been proposedto use multiple chopping data sets for
enhancingthe quality of reconstruction. The results of independent recon-
struction from di�erent data sets are combined in a post-processingstep
using the pointwisemeanor median.
Bertero [7] usesthis strategy mainly to avoid the appearanceof ghosts of
bright objects and arti�cial areaswith zero intensity.
Wetakeadvantageof multiple data setsfor a robust reconstruction. Di�eren t
from [4, 7] we combine the results to the reconstructionsafter each iteration.
Let H k ; k = 1: : : K denote a set of chopping amplitudes and denote by f k

the corresponding sampleddata sets.
A reconstructionu is a solution of the system

AH k u = f k k = 1; : : : ; K : (3.8)

We solve this systemwith a blocked Landweber-Kacmarzmethod (more de-
tails on such methods can be found in [32]):

Set u (0) = 0
for s = 1: : : steps :

1. For each k = 1; : : : ; K perform
two cg iterations starting from (u (s� 1)) :
The solution is denoted by u (s)

k .
2. Calculate the median u (s) from

of u (s)
1 ; : : : ; u(s)

K for noise removal.
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Note that the median is calculatedseparatelyin each samplingpoint for the
stack of images:That is, in step 2 of the above algorithm we set

(u (s) ) i;j := median f (u1)(s)
i;j ; : : : ; (u (s)

K ) i;j g

for each i; j .

3.2.2 Numerical Tests

To simulate realistic test data we require detailed knowledgeabout the un-
derlying noise process. We have to take into account that two kinds of
noisesourcesarepresent: �rstly , thermal emissionsfrom the sky (background
noise) and the telescope (dark noise), which both is reducedby the chopping
and nodding procedure,and secondlynoiseinducedby the recordingprocess,
i.e. Poissonnoisedue to photon counting (each photon hitting a capacitorof
the CCD-sensor is counted with a certain probability) and Gaussianread-
out noise.

We assumethat the noise a�ects the four signals S1; S2; S3 and ~S1 inde-
pendently. Let E(u(x; y)) denote the corresponding random variable. The
recordeddata then are

~f (x; y) :=2u(x; y) + � (u(x; y)) + � (u(x; y))

� u(x + Hx ; y + Hy) � � (u(x + Hx ; y + Hy))

� u(x � Hx ; y � Hy) � � (u(x � Hx ; y � Hy))

(3.9)

where� (u(x; y)) are realizationsof E(u(x; y)). We write ~f (x; y) := f (x; y) +
~� (x; y) and ~f i;j := f i;j + ~� i;j , respectively, where

~� (x; y) = � (u(x; y)) + � (u(x; y))

� � (u(x + hh; y + Hy)) � � (u(x � Hx ; y � Hy)) :

According to our considerations,the random variable E(u) is the sum of a
Gaussianrandom E1 = N (0; � 1); � 1 � 0 (the background emissionand read
out noise)and a PoissonnoiseE2(u): E(u) := E1(u) + E2(u).
We usetest imageswith intensitiesscaledto [0; 1]. In practice theseintensi-
ties are related to numbers of photon counts provided by the CCD sensors.
An intensity u corresponds to a photon count of I phot � u photons, where
I phot > 0 is an unknown factor. We approximate the Poissondistribution of
the photon count by Gaussiannoisewith zeromeanand standard deviation
� 2 =

p
I phot � u. Scaling this distribution to the interval [0; 1], we derive a
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Gaussiandistribution for the intensity of zeromeanand standard deviationp
u=Iphot . Thus we can approximate E2 by a Gaussiandistribution of zero

meanand standard deviation
p

� 2 � u with � 2 = 1
I phot

.

Let us show how arti�cial structures arisewhenapplying 'classical'methods
for reconstruction from noisy chopped and nodded data.

We concentrate on chopping amplitudes that are small with respect to image
size.

Figure 3.11: Left: The �rst test image. The white frame marks the domain

, wherethe chopped data are recorded;right: Corresponding chopped data
with chopping amplitude H = (5; 3) including noisewith variances� 1 = 0:05
and � 2 = 0:0001.

Fig. 3.11, left, shows our �rst arti�cial test image. Chopped and nodded
data for H = (5; 3) distorted by Gaussiannoiseprocesseswith � 1 = 0:05 and
� 2 = 0:0001are shown in Fig. 3.11,right. The signal-to-noiseratio (SNR) is
25:4752dB 1.
Fig. 3.12, top left and right, shows the result of applying method (B) with
� = 0:1 after 10 and 100 iterations, respectively, to the data (H = (5; 3)).
The samemethod is applied to test data with H = (5:5; 3:3) not matching
the grid spacing.The results for � = 0:1 after 10 and 100stepsare presented
in Fig. 3.12,bottom left and right, respectively.

1Let u : 
 ! R be a signal with minimum umin and maximum umax , ~u : 
 ! R a
distorted signal and � the standard deviation of u � ~u, then the signal-to-noise-ratio is
de�ned by SNR := 20log10

� umax � umin
�

�
.
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Figure 3.12: Top left: Reconstructionfrom the noisy data given in Fig. 3.11,
right, using method (B) with � = 0:1 after 10 iterations. Top right: Re-
construction after 100 iterations of method (B) with � = 0:1. Bottom left:
Reconstruction with H = (5:5; 3:3) using method (B) with � = 0:1 after
10 iterations. Bottom right: Reconstruction from the samedata after 100
iterations of method (B) with � = 0:1.

The computation times 2 of method (B) were 0.05 secondsfor H = (5; 3)
and 10 steps, 0.2 secondsfor H = (5:5; 3:3) and 10 steps, 0.5 secondsfor
H = (5; 3) and 100stepsand 1.9 secondsfor H = (5:5; 3:3) and 100steps.

As the chopped and nodded data provide information about the objects'
edges,the reconstructionof point-lik e objects and boundary regionsof larger
objects is satisfactoryat an early stageof the iteration. The interior of larger
objects is reconstructedat a later stage.With increasingnumber of iterations
arti�cial structures rise from the noisecounteracting with the reconstruction

2Computed on an AMD 64 FX 3500+, computations times have been averagedover
several runs
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process.

In the casewhen the chopping points coincide with the discrete sampling
points, the reconstruction is more e�cien t. If chopping points and data
points do not coincide,the reconstruction is smoother, the iteration shows a
slower convergenceand thus more stepsare neededfor the reconstructionof
interior parts of the objects.

Method (A), the cg-basedmethod or the Fourier-basedreconstructionshow
similar convergenceproperties and the sameoccurrenceof arti�cial struc-
tures. For the cg-basedmethod it canbeobserved that the residualdecreases
in the beginning of the cg-iteration but starts oscillating after a few steps.
This suggestan early termination of the iteration when the �rst local mini-
mum of the residual is reached. Even more, we apply only few stepsof the
cg-iteration in our tests.

Let us comparethese result with those obtained by applying the modi�ed
method (B) and the cg-basedmethod to noisy test data, with median �l-
tering applied after each step of iteration. (Method (A) in generalproduces
results that are more blurred. They are not presented here.)

Figure 3.13: Left: Reconstruction from the data in Fig. 3.11, right, with
chopping amplitude H = (5; 3) using method (B) with � = 0:1 and 100
iterations combined with median �ltering (�lter sizem = 1). Right: Recon-
struction after 30 iterations of the cg-basedmethod combined with median
�ltering (�lter sizem = 3 and m = 1 in the last iteration, respectively).

Fig. 3.13,left shows the reconstructionof the �rst test imagefrom noisy test
data (seeFig. 3.11)after 100iterations of method (B) and additional median
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�ltering (�lter sizem = 1) after each iteration. The results of applying the
cg-basedmethod with 30 stepsand median�ltering (�lter sizem = 3 except
for the last step, wherewe usedm = 1) on the samedata set are presented
in Fig. 3.13, right. The computation times were 3.3 secondsfor method (B)
and 4.4 secondsfor the cg-basedmethod. Comparedto the reconstructions
with classicalmethods (seeFig. 3.12) arti�cial structures rising from noise
in the data are signi�cantly removed by both methods.

Figure 3.14: Left: The secondtest image. Right: the corresponding noisy
chopped and nodded imagefor h = (10; 3), � 1 = 0:002and � 2 = 0:00001.

Besidethe test image introduced above we usetwo other test images. The
secondtest image shown in Fig. 3.14 contains objects with a wide halo ex-
tending acrossthe boundary of the domain 
, in which the data is collected.
In Fig. 3.14, left, the signal u on 
 H is visualized. The domain of data
acquisition 
 is marked with a white rectangle.
We simulated multiple chopped data sets with �v e di�erent chopping am-
plitudes (10; 3), (0; 7), (10; 10), (7; 14) and (15; 0). The chopped data for
H = (10; 3) on 
 are shown in Fig. 3.14, right. Arti�cial noisewas added
with � 1 = 0:001 and � 2 = 0:00001related to the weak structures contained
in the chopped data. The signal-to-noise-ratiois 40:0494dB.

For the reconstructionfrom thesedata, wecomparedi�erent strategies.First
we apply the cg-basedmethod with 40 stepson each data set with median
�ltering (�lter size m = 3, with m = 1 in the last step). For a fair com-
parison with methods using multiple sets,we depict the best result of these
reconstructions,which waswith H = (7; 14), presented in Fig. 3.15,top right.
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Figure 3.15: Top left: Reconstructionwith the cg-basedmethod after 40 it-
erations (without median �ltering). The chopping amplitude is H = (7; 14).
Top right: 40 iterations with the cg-basedmethod combined with median
�ltering with �lter size m = 3 (m = 1 in the last iteration). Note that
for comparisonwith the method of multiple chopped data setswith ampli-
tudes h = (10; 3), (0; 7), (10; 10), (7; 14) and (15; 0) we depicted H = (7; 14)
showing best results by independent reconstruction. Bottom left: Combined
imageusing the multiple chopped data calculating the pointwisemedian af-
ter independent reconstruction. Bottom right: Reconstructionusingmultiple
data setsand combining the results after each iteration using the pointwise
median.
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The reconstruction from the samedata using the cg-basedmethod with 40
stepsbut without median �ltering is shown in Fig. 3.15, top left. As for the
�rst test image, the reconstruction method combined with median �ltering
is able to remove arti�cial structures signi�cantly comparedto the method
without median�ltering. A slight e�ect of negative counterparts of the point
sourcepresent in the data is observable (cf. the reconstructionartifacts men-
tioned in Sect. 3.2.1).

Let us considerthe reconstruction from multiple data sets. First we apply
an independent reconstruction on each data set, using the cg-basedmethod
with 40 stepswithout median�ltering. The �nal result is obtained by calcu-
lating the medianof thesereconstructionsfor each data point (seeFig. 3.15,
bottom left). This strategy reducesthe appearanceof arti�cial structures,
but the result still contains noise. The combined reconstructionon multiple
data setsby applying the cg-basedmethod with 40 iterations (without me-
dian �ltering) and calculating the pointwise median of the reconstructions
after each iteration (seeFig. 3.15, bottom right) is able to properly remove
arti�cial structuresarising from noise. Additionally , the e�ect of the negative
counterparts of the point sourceis compensated.

The computation times were about 0.9 secondsfor the cg-basedmethod
without median �ltering and about 5.5 secondswith median �ltering. The
reconstructionwith multiple chopped data setstook about 4.7 secondswith
independent reconstruction and �nally averagingand 5 secondswith calcu-
lating the median after each iteration. Thus the numerical e�ort of using
multiple data setsis comparablewith the e�ort of median �ltering.

The third test image is an observation of the planetary nebula Menzel I I I
(called the 'ant nebula') (Fig. 3.16, left). The data are given with 
oating
point precisionand show up a largedi�erence betweenintensity of the central
star (� 0:0683)and the intensity rangeof the nebula(� 10� 4). Visualization
is performedby scalingthe intensities using

S : R ! [0; 1]

S(x) = min
�

log(P(x)=(
 � I max ) + 0:1) � log(0:1)
log(1:1) � log(0:1)

; 1
�

;

where I max > 0 is the maximal intensity of the original data, P(x) is the
projection on [0; I max ], and 0 < 
 � 1 is somescalingparameter. The inter-
val [0; 1] then is mapped to gray valuesbetween0 and 255. For the results
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Figure 3.16: Left: Third test image, planetary nebula Menzel I I I, Right:
Arti�cial chopped data for H = (14; 10) including noise � 1 = 5 � 10� 6 and
� 2 = 10� 6.

presented herewe used
 = 0:01.

We simulated the chopping and nodding processadding noise with � 1 =
5 � 10� 6 and � 2 = 10� 6, chosenwith respect of the weak intensity of the
nebula in the rangeof 10� 4.

Weusedsmall choppingamplitudesup to 14Pixels relative to the imagesize.
Note that for larger chopping amplitudes in the rangeof the object size,the
reconstructioncan be performedwith only few iteration stepswith the noise
ampli�cation being negligible.

We provide �v e di�erent chopped and noddeddata set with chopping ampli-
tudes (14; 10), (14; 0), (14; 14), (10; 0), and (7; 14). The chopped and nodded
data set for H = (14; 10) with SN R = 42:9788dB is presented in Fig. 3.16,
right.

Fig. 3.17, top left, shows the result using method (B) with 100 iterations on
this data set, applying median �ltering with �lter sizem = 1 after each iter-
ation. The result of the cg-basedmethod on the samedata set with 20 steps
and median �ltering (m = 3 exceptfor the last step, wherem = 1 wasused)
is given in Fig. 3.17, top right. Both methods remove arti�cial structures
reasonablywell. A blurring e�ect of the median �ltering is observable.



3.2. RECONSTRUCTION FROM CHOPPED AND NODDED DATA 109

Finally we apply combined reconstructionsusing the �v e chopped data sets.
Fig. 3.17,bottom left, shows the reconstructionfrom applying 100iterations
of method (B) to each data set separately and calculating the pointwise
median after each iteration. The result of the cg-basedmethod after 20
steps combining the results after each iteration, is presented in Fig. 3.17,
bottom right. Both reconstructionsare of comparablequality.
The computation times for single data chopped and nodded data setswere
about 2.5 secondsusing method (B) with median �ltering and 0.9 seconds
using the cg-basedmethod with median �ltering.
Using the �v e di�erent chopped data setsand calculating the median after
each iteration, 2.8 secondswere neededusing method (B) and 1.6 seconds
using the cg-basedmethod.

To summarize, we obtained good reconstruction results for the proposed
methods on noisy data, wherethe results of classicalmethods show a signif-
icant rise of arti�cial structures. The results of reconstruction from multiple
data sets show a better quality than these of iterativ e methods combined
with median �ltering and is preferableif the required data are available. In
caseof single chopped and nodded data sets a reconstruction with median
�ltering is advisable.
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Figure 3.17: Top left: Result of method (B) after 100 iterations in combi-
nation with the median �ltering with �lter sizem = 1. Top right: Result
of the cg-basedmethod after 20 iterations in combination with median �l-
tering with sizem = 3 except for the last iteration, where we usedm = 1.
Bottom left: Result of a combined reconstructionwith method (B) (� = 0:1,
100 steps) using multiple data from chopping amplitudes (14; 10), (14; 0),
(14; 14), (10; 0), and (7; 14). After each iteration step the reconstructedim-
agesare reinitialized with the pointwise median. Bottom right: Result of a
combined reconstruction(pointwisemedian) with the cg-basedmethod with
20 stepsusing the samemultiple data set.



Chapter 4

Results

4.1 Steepest Descent

4.1.1 Comparison of F 1, F 2 and F 3
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Figure 4.1: First test data set

In this section we compare results of applying a steepest descent method
(algorithm B) using the proposedfunctionals F 1(u), F 2(u) and F 3(u).

We start with the one-dimensionalcase:
Fig. 4.1 shows linear interpolated discrete data sampledfrom function u0 :
[0; 99] ! R; u0 = � [33;66] with sampling points x i = i; i = 0: : : 99. (We use
h = 1.)
Sincewe do not assumeany distortion, we have u� = u0.

111
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Figure 4.2: Result of minimizing F 1(u) with � = 600 and " = 0:1; " =
0:01; " = 0:001and " = 0:0001using the steepest descent algorithm.

We applied the NCBV-�lter using F 1(u), F 2(u) and F 3(u) with � = 600,
steps= 106 (maximal number of steps)and " = 0:01; 0:001and 0:0001. The
steepest descent wasstopped, whenoneof the following criteria wassatis�ed
(cf. Section2.5.1):

a) Step size� t decreasesbelow � t tol = 10� 10 or

b) jr F (u)j � � F tol = 10� 10, wherer F = r F 1(u), r F 2(u) or r F 3(u).

Figs. 4.2,4.3,and 4.4show the result of NCBV-�ltering usingF 1(u), F 2(u)
and F 3(u) for � = 600and " = 0:01, " = 0:001and " = 0:0001.

Applying the NCBV-�lter for the di�erent data sets,weobservethe following:

� The step size decreasesduring the �rst iterations, then stays almost
constant for the rest of the iterations. In caseof appropriately chosen
threshold� t tol , the iteration stopsbeforereaching the maximal number
of stepswhen � t � � t tol is satis�ed

� The resultsshow a smoothing e�ect for larger valuesof " . On the other
hand the rate of convergencedependsstrongly on ", seeFigs. 4.5, 4.6
and 4.7. For smaller valuesof " the convergenceis signi�cantly slower
and thus the numerical e�ort is larger.

� The choice of the starting point for the steepest descent method only
a�ects the computational e�ort but not the quality of the results. Set-
ting u (0) = u � or u (0) = 0 is feasible.
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Figure 4.3: Result of steepest descent on F 2(u), � = 600 and " = 0:1; " =
0:01; " = 0:001and " = 0:0001.

Comparing the results of minimizing F 1(u), F 2(u) and F 3(u), we observe
that F 1(u) shows a oscillating numerical solution to the NCBV-�ltering, see
Fig. 4.2. Note that applying central di�erences(see(2.85)) on the data u has
a smoothing e�ect and thus the term

P N
i=1 � jr hui j in F 1(u) is insensitive

to such oscillations.
The considerationsin Example2.4.6motivate to construct a piecewiselinear
function from the data ui ; i = 1; : : : ; N by linearly interpolating u1; u1+ u2

2 ,
u2+ u3

2 ; : : : uN � 1+ uN

2 ; uN , which givesa result without oscillations,seeFig. 4.8.
Neverthelesssuch a post-processingof the �ltered data is not desirablefor
practical applications.

Applying steepest descent to the functional F 2(u), seeFig. 4.3, we seea
slight stair-casing e�ect, which is causedby the insensitivity of 1

2(jr r
huj +

jr l
huj) in F 2(u) to such stair-casing.

Functional F 3(u) shows a better numerical performance,seeFig. 4.4, since
jr hui j is evaluated using either a left- or right-sided di�erence scheme.
The resultsmatch the analytically calculatedsolutionsof the continuousset-
ting argminF c(u) presented in [26].

We study computation times of minimizing F 1, F 2 and F 3 for di�erent � .
It is obvious that the computation time dependslinearly on the number of
iteration stepswith the latter being determinedby the stopping criteria.
Table 4.1 shows the computation times for the iteration, measuredwith use
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Figure 4.4: Result of steepest descent on F 3(u), � = 600 and " = 0:1; " =
0:01; " = 0:001and " = 0:0001.

of the clock()-routine from a standard c-library. Additionally the valuesfor
� t, averagedover the iterations, i.e. � t := 1

steps

P steps
i=1 � t i , and F (u(s)) and

r F (u(s)) after the last iteration are presented for di�erent � .

We observe that for a large number of iterations the computing time needed
per iteration step is almost constant. For a small number of iterations the
time neededper iteration step is slightly larger, which may be due to some
initializing work such as memory allocation.
The computation time and the number of stepsfairly depend linearly on � .
The step size� t adapts to the magnitude of jr F (u)j, sincej� tr F (u)j is
fairly constant.

The NCBV-�lter was motivated for reconstruction of data with two kinds
of errors, data recordedwith distorted sampling points and with additional
noisein the sampledvalues,but it may be usedalso for denoising. To test
the e�ect of additive Gaussiannoise, we use the test data set as shown in
Fig. 4.9, derived from data set given by Fig. 4.1 by adding Gaussiannoise
with zeromeanand standard deviation 0.01.

The results of NCBV-�ltering applied to this noisy data for � = 10 using
functionals F 1(u), F 2(u) and F 3(u) are shown in Fig. 4.10. In the left col-
umn the results for F 1(u), F 2(u) and F 3(u) on the whole domain [0; 99]
are given, the right column shows magni�cations of the data betweenx = 33
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Figure 4.5: Dependenceof the convergencerate on " for steepest descent
minimization of F 1(u (s) ) with � = 600 and " = 0:01; " = 0:001 and " =
0:0001,respectively.

and x = 66 to highlight di�erences in the strength of denoising.

Minimizing F 1(u) gives relatively rough results, which are unfavorable for
denoising. In comparisonminimizing F 2(u) and F 3(u) provides more fea-
sible numerical results.
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Figure 4.6: Steepest descent on F 2(u (s)) � = 600 and " = 0:01, " = 0:001;
and " = 0:0001,respectively.
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Figure 4.7: Steepest descent on F 3(u (s)) � = 600 and " = 0:01, " = 0:001;
and " = 0:0001,respectively.
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Figure 4.8: Detail of the result of steepest descent on F 1(u) with � = 600
and " = 0:01, seealso Fig. 4.2. Additionally we constructed a piecewise
linear function as motivated in Example 2.4.6, referred to as 'modi�ed'
result. This alternative result doesnot show oscillationsas for the standard
linear interpolation.

� time steps time/step F (u (s) ) jr F (u (s) )j � t
(sec) (sec)

F 1 10 93.30 5000 0.01866 41960.422 1.1410 7.774e-05
F 1 100 92.80 5000 0.01856 179615.122 49.6077 9.118e-06
F 2 10 10.74 240 0.04474 44115.499 466.0976 2.533e-04
F 2 100 34.81 788 0.04418 181725.112 3462.0024 1.977e-05
F 3 10 15.83 269 0.05886 45296.579 439.2283 2.601e-04
F 3 100 48.74 862 0.05655 185510.655 3283.4732 2.337e-05

Table 4.1: Computation times for the one-dimensionalcase minimizing
F 1(u), F 2(u) and F 3(u) for � = 10; 50; 100 and 200. Additionally we
provide the number for steps, the averagetime neededper step, the value
of F (u), r F (u) in the last iteration step and the step size � t averaged
over the iteration steps. (The computation times were determinedon AMD
Athlon(tm) 64 Processor3500+ and were averagedover 5 runs.)
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Figure 4.9: First test data set with noise
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Figure 4.10: Left column: Reconstructionfrom noisy test data usingF 1(u),
F 2(u) and F 3(u) with � = 10 and " = 0:001. Right: magni�cation of the
three reconstructionon the interval [33; 66].
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Figure 4.11: The test image\cards" with noisecontaining geometricobjects
and arti�cial noise.

Let us alsopresent numerical results from NCBV-�ltering in the two dimen-
sional case,i.e. we consider�ltering of images.
Similar to the one-dimensionalcaseminimization of F 1(u) shows a sensitiv-
it y to noisein the data.

To demonstratethis sensitivity we considera noisy test image,presented in
Fig. 4.11. The results of applying the NCBV-�lter with F 1(u) and � = 10
(Fig. 4.12,top left) and � = 100(Fig. 4.12,top right) show unsmooth struc-
tures similar to thoseobserved in the onedimensionalcase.Thesestructures
rise independently on the magnitude of � and do not appear when using
F 2(u) or F 3(u), seeFig. 4.12middle row and bottom row, respectively.

Fig. 4.13 shows a magni�cation of the lower left part of the �ltered image,
using F 1(u) (left), F 2(u) (middle) and F 3(u) (right), to highlight the dif-
ferencein smoothnessof the results for di�erent numerical schemesjr huj.

Besidesthe quality of �ltering, the numerical performanceof the algorithm
is of interest.
We demonstratethe computational e�ort of the steepest descent algorithm
on the functional F 1(u), F 2(u) and F 3(u) �ltering the \cards" imagewith
noise. Table 4.2 shows the computation times, the number of stepsneeded
and the time neededper step for each of the functionals F 1(u), F 2(u) and
F 3(u). We use � utol = 0:001 and � = 10 or � = 100, respectively. Addi-
tional the valuesF (u) and jr F (u)j and the averageof � t usedduring the
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alpha time steps time/step F (u) jr F (u)j � t
F 1 10 7.08 483 0.01466 42738.827 67.2354 1.204e-04
F 1 100 10.53 761 0.01384 181894.618 725.6951 1.173e-05
F 2 10 10.20 320 0.03189 44818.572 114.5996 1.881e-04
F 2 100 34.16 1085 0.03148 185592.514 614.5084 1.265e-05
F 3 10 12.76 297 0.04297 45260.015 97.6068 2.362e-04
F 3 100 91.92 2215 0.04150 185034.626 569.3436 8.626e-06

Table4.2: Computational e�ort for the two-dimensionalcase:Total comput-
ing times and computing times per step (in seconds)of the steepest descent
on F 1(u), F 2(u) and F 3(u) with � = 10 and 100, respectively, for the
\cards" image. Additionally the valuesof F (u), jr F (u)j and averageof � t
used during the iterations are given. (The computation times were deter-
mined on AMD Athlon(tm) 64 Processor3500+ and were averagedover 5
runs.)

iterations are given.

The numerical resultspresented above show that a largenumber of iteration
steps is neededto match the stopping criteria � t < � t tol or jr F (u)j <
� F tol , respectively, providing a good approximation of the exact minimizer,
but also resulting in high computational e�ort.
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Figure 4.12: Top row: Result of NCBV-�ltering using F 1(u) with � = 10
(left) and � = 100 (right). Middle row: Result of NCBV-�ltering using
F 2(u) with � = 10 (left) and � = 100 (right). Bottom row: Result of
NCBV-�ltering using F 3(u) with � = 10 (left) and � = 100 (right). For
each �ltering we used" = 0:001. The results using F 2(u) and F 3(u) are
similar, whereasthe results using F 1(u) show someunsmooth structures,
seemagni�cation in Fig. 4.13.
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Figure 4.13: Magni�cation of a detail in the imagesin Fig. 4.12, left column
(� = 10). Steepest descent on functional F 1(u) producesresults with small
oscillations. These do not occur when functionals F 2(u) and F 3(u) are
minimized.
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4.1.2 Filtering prop erties of the NCBV-Filter

In the following weconcentrate on the numerical resultsof minimizing F 3(u)
and use" = 0:001for providing a good trade-o� betweena the quality of the
numerical solution and the numerical e�ort.
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Figure 4.14: NCBV-�ltering using F 3(u) with " = 0:001 and � = 100; 200
and 400.

Let us investigatethe e�ect of the regularization parameter� . We useagain
the one-dimensionaltest data presented in Fig. 4.1.

Fig. 4.14 shows the results of the NCBV-�ltering using functional F 3(u)
with di�erent values� = 100; 200and 400.
As expected, with rising � the secondpart of the functional basedon the
BV-semi-normbecomesmore important than the �t-to-data term and thus
the di�erence betweendata and computedsolution increases.
We observe that the numerical results match the theoretical solutions pro-
posedin in [26].

In 2D the �ltering e�ect on geometricalobjects is of importance. For study-
ing the behavior of the NCBV-�lter we introducea secondtest imagereferred
to as the \puzzle" image,seeFig. 4.15,and apply the �lter on the noise-free
data.

NCBV-�ltering is applied to this test imagewith � = 10 (cf. Fig. 4.16, top
left), � = 50 (middle left) and � = 100 (bottom left). The di�erence of the
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Figure 4.15: The test image\puzzle" containing geometricobjects and areas
of linear increasingintensities. Note the structures resulting from a dithering
processin theseareasand inside the puzzleobjects. We will seethat these
structures strongly are a�ected by NCBV-�ltering.

�ltered imagesto the original data is show in Fig. 4.16, top right (� = 10),
middle right (� = 50) and bottom right (� = 100), respectively
Hereby, for data (ui;j )(i;j )2I and (vi;j )(i;j )2I the di�erence (ui;j � vi;j )(i;j )2I is
visualized by mapping the interval [� m; m]; m = maxfj ui;j � vi;j j j (i; j ) 2
I g to the interval [0; 255] using s(x) = 128 + x � 127=m. We refer to
(s(ui;j � vi;j )) (i;j )2I as the di�er ence image in the following.

Causedby the way of creating, this imagecontains somedithering-like struc-
tures in the areasof linearly increasingintensity and inside the 'puzzle' ob-
jects (cf. magni�cation shown in Fig. 4.17, left column).

One e�ect of NCBV-�ltering on the \puzzle" image is that the dithering
structures in the original image are �ltered out, as for example inside the
two squaresin the top left and top right part of the imageand parallel level
lines are formed out. Also somedithering structures inside the 'puzzle' ob-
ject aresmoothed, seeFig. 4.17,right column. Thesesmoothing e�ects occur
even for small valuesof � , sincethesedithering structures strongly in
uence
the NCBV-functional by changing the BV-semi-norm. Thus the correspond-
ing structures are smoothed out in the very early stepsof iteration.

Another e�ect of NCBV-�ltering concernsthe boundariesbetweenhomoge-
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Figure 4.16: Steepest descent minimization of F 3(u) for the \puzzle" image
with " = 0:001 and � = 10 (top), � = 50 (middle) and � = 100 (bottom),
respectively.

neousregionsin the image:

In [27] we have shown that minimizing the NCBV-functional F (u) for small
� is related to Mean Curvature Flow (MCF).
This relationship can also be recognizedin the results: Let us considerthe
bright objects in the test image, i.e. homogeneousparts being brighter that
their surroundingbackground. Wethink of the boundariesof theseobjectsas
discreterealizationsof piecewisedi�erentiable curveswith positive curvature
at convex parts of the objects and negative at concave parts. In Fig. 4.16,
left column, we seethat the di�erence between�ltered and original imageis
most signi�cant at points of large curvature of the objects' boundary, and
at points, wherethe curvature becomesdiscontinuous(corners),respectively,
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Figure 4.17: Left: Detailed view of the secondtest image. Middle: Details
of the �ltered imagepresented in 4.16,top, with � = 10. Dithering e�ects in
the original imageare smoothed out by NCBV-�ltering already for small � .
Right: Di�erence betweenthe details of the original and the �ltered image.

whereasat straight boundariesonly a weak smoothing is observable, Thus
the strength of �ltering is depending on the objects' curvature, leading to a
decreaseof the meancurvature of the boundary.

Note that for larger valuesof � the smoothing e�ect results in a blurring of
the objects' boundary.

4.1.3 Comparison between NCBV-Filter, NCH-Filter
and TV-minimization

Let us compare the results of minimizing the NCBV-functional with the
results of minimizing the NCH-functional and total-variation (TV-) mini-
mization, [45], respectively.

The functional for TV-minimization being related to the NCBV-functional,
is given by F T V (u) =

R

 (u(x) � u� (x))2 + � jr u(x)j dx. Again we use a
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steepest descent method.

We begin with the one-dimensionalcase:
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Figure 4.18: Original data and data recordedwith distorted samplingpoints,
wherethe standard deviation of the distortion is � = 5.

We test the NCBV-�lter for reconstruction of data recordedwith distorted
sampling points. Fig. 4.18 shows the original and the distorted test data
used.
In Fig. 4.19 the result of the NCBV-�ltering with " = 0:01 and � = 10
and � = 50, respectively, is plotted. The result for � = 10 still shows a
slight stair-casinge�ect aswell assomepeaksremaining from the distortion,
whereasthe result for � = 50 is smoother but the reconstruction of the left
edgeof the graph is not as good as the previousresult.

Applying the NCBV-�lter with � = 20and " = 0:001(seeFig. 4.20)provides
a satisfactory reconstruction.

We comparethe resultsof NCBV-�ltering to thosederived from applying the
NCH-�lter. The resultsof applying this �lter to the test data with distorted
sampling points is shown in Fig. 4.21 for � = 100and for � = 1000,respec-
tively. We observe that the NCH-�lter provides lessfeasibleresults than the
NCBV-�lter, since more reminders of the distortion are observed even for
larger � .

Let us additionally comparethe results of NCBV-�ltering with thoseof the
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Figure 4.19: Reconstruction of the original data from distorted data using
NCBV-�ltering with � = 10 and � = 50, respectively, and " = 0:01.

related TV-�ltering. Fig. 4.22 shows the results of applying the TV-�lter
with � = 0:5 and � = 1, respectively.
Compared to results before, TV-�ltering provides reconstructions of data
with distorted samplingpoints of lessquality: It can be recognizedthat the
edgesof the graph are not reconstructedwell. There is a strong stair-casing
e�ect as well as a loss of contrast. Therefore TV-�ltering is not a feasible
alternative to NCBV-�ltering for the reconstruction of data with distorted
sampling points.

At the endof this section,wecomparethe NCBV-�ltering with NCH-�ltering
and TV-minimization for the reconstruction of imagesrecorded with dis-
torted samplingpoints.
Fig. 4.23, right, shows the \cards" imagewith sampling point errors.
To comparewith, the undistorted imageis presented in Fig. 4.23, left.

Note that sampling points which after distorting lie outside the area of the
original image,are associate with zero(black) intensity.

The reconstructionby NCBV-�ltering usingF 3(u) with � = 20and � = 100
is presented in Fig. 4.24, top left and right, respectively.

With regularizationparameter� = 20the NCBV-�ltering providessatisfying
results, sincethe e�ect of the distortion is reducedsigni�cantly. For � = 100
the NCBV-�ltering provides a comparatively smooth reconstruction, with
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Figure 4.20: Reconstruction of the original data from distorted data using
NCBV-�ltering with � = 20 and " = 0:001.

blurring the edgestoo much. Compared to theseresults the NCH-�ltering
with � = 100 (Fig. 4.24, bottom left) using a steepest descent with a func-
tional corresponding to F 3(u), provides results with a reconstructionof the
objects' boundary with lesssmooth curvature. Applying the NCH-�ltering
with � = 1000 we observe a better reconstruction of the objects' bound-
ary. Additionally the result is lesssmooth than those of the corresponding
NCBV-�ltering with � = 100, but being lesssatisfactory as the results of
NCBV-�ltering with � = 20. To sum up, the NCBV-�ltering is more prefer-
able than NCH-�ltering even for parameter � to be chosenas the most fea-
sible for each caseindependently.

For a comparisonwe also apply the TV-�lter with � = 20 (cf. Fig. 4.25,
middle) to the test data with distorted sampling points. Similar to the the
one dimensional casethe result shows a stair-casing e�ect. Note that the
black spots in the TV-�ltered image are remaindersof the distortion, van-
ishing when applying the TV-�lter with larger valuesfor � .
Moreover it doesnot have the e�ect on the curvature of the objects bound-
ariesas the NCBV-�lter (cf. Fig. 4.25, left, for � = 20), i.e. the boundaries
arenot reconstructedthat straight, asshown by the di�erence imagebetween
NCBV-�ltered and TV-�ltered imagesin Fig. 4.25, right, as well as by the
plot of level lines for both results, seeFig. 4.26.

Sincethe NCBV-�lter was motivated for the special caseof distorted sam-
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Figure 4.21: Reconstruction of the original data from distorted data using
the NCH-�lter with � = 100and � = 1000,respectively.

pling points with additional additive Gaussiannoise,we alsowant to provide
a test image for this particular noisemodel, cf. Fig. 4.27, left. We apply
both the NCBV-�ltering for � = 20 and the NCH-�ltering with � = 1000to
thesetest data. The results are provided in Fig. 4.27 middle (NCBV) and
right (NCH). We observe that the NCBV-�ltering is able to remove the noise
content of the test imagesatisfactorily well. In contrast for NCH-�ltering a
large value of � has to be provided to reducethe noisecontent of the image
signi�cantly. Neverthelessa notable fraction of the noiseremains.
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Figure 4.22: Reconstruction of the original data from distorted data using
the TV-�lter with � = 0:5 and � = 1.

Figure 4.23: Left: Original image. Right: our third test imagewith distorted
samplingpoints. For the randomshift � = (� x ; � y) Gaussianrandomvariables
� x ; � y with zeromeanand standard deviation � = 2 are used.
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Figure 4.24: Top left: result of the steepestdescent algorithm on F 3(u) with
� = 20. Top right: result of the steepest descent algorithm on F 3(u) with
� = 100. Bottom left: result of NCH-�ltering with � = 100. Bottom right:
result of NCH-�ltering with � = 1000.

Figure 4.25: Left: result of the steepest descent algorithm on F 3(u) with
� = 20. Middle: result of the steepest descent algorithm using the TV-
functional with � = 20. Right: di�erence betweenthe NCBV-�ltered image
(left, � = 20) and TV-�ltered image(middle).
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Figure 4.26: Left: Level lines of a detail of the NCBV-�ltered image in
Fig. 4.25,left, for intensities32, 64, 96, 128,160,192,and 224. Right: Level
lines of a detail of the TV-minimized imagein Fig. 4.25, right, for the same
intensities. It can be observed that NCBV-�ltering provides smoother level
lines for the imagewith samplingpoint errors than TV-minimization.

Figure 4.27: Left: test imagewith distorted sampling points and additional
noise. Middle: result of the steepest descent algorithm on F 3(u) with � =
20. Right: result of the steepest descent algorithm usingthe NCH-functional
with � = 1000.
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4.1.4 Filtering with the log-prior

Figure 4.28: Left: test imagewith distorted samplingpoints. Middle: result
of the steepest descent algorithm appliedon F 4(u) with � = 10and � = 0:1.
Right: result of the steepest descent algorithm using functional F 3(u) with
� = 10. The result of minimizing F 4(u) shows a better preservation of
texture, but with weaker �ltering of the distortion.

In Section1.5 we motivated a functional basedon the log-prior, see(1.62).
For the implementation we usethe functional

F 4(u) := h2
X

(i;j )2I

f c(ui;j � u�
i;j ; jr hui;j j); (4.1)

wheref c(� ; a) is the convexi�cation of

f (� ; a) =
� 2

2jaj
+ � jaj � � logjaj

with respect to a, and apply a steepest decent method. We refer to the min-
imization of (4.1) as the log-�lter .

For testing we usethe \mountain" imagewith sampling point errors. A de-
tail of the distorted image is shown in Fig. 4.28, left. Note that this image
contains mainly textures, which is the reasonthat the numerical gradient
of the original imagedoesnot concentrate at zero (seehistogram plotted in
Fig. 1.11). Using the log-prior we expect a similar distribution of the gradi-
ent for the �ltered image.
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A detail of the result of applying the �lter with � = 10 and � = 0:1 is
shown in Fig. 4.28,middle. For comparisonwe plotted alsothe result of the
NCBV-�lter F 3(u) using the same� = 10, seeFig. 4.28, right. Additional
parametersfor both applications were " = 0:001and steps= 1000.

It can be observed that the log-�lter better preservesthe textures in the im-
age(forest and clouds), but with weaker �ltering of the distortion. We note
that care has to be taken when choosing parameter � . Applying the �lter
with large valuesof � results in rarely �ltered images.

Figure 4.29: Left: test imagewith additive Gaussiannoise. Middle: result of
the steepest descent algorithm applied on F 4(u) with � = 10 and � = 0:1.
Right: result of the steepest descent algorithm using functional F 3(u) with
� = 10.

We also tested the �lter on a noisy image, seeFig. 4.29, left. The result of
minimizing (4.1) with � = 10 and � = 0:1 is shown in Fig. 4.29,middle. As
in the examplebefore,a comparisonwith NCBV-�ltering using the same�
shows that textures are better preserved for the log-�lter.

We note that when increasingparameter � while keeping � �xed the re-
sults becomessmother, indicating that the smoothing e�ect provided by
term � jr hui;j j in (4.29) compensatesthe texture preservinge�ect of term
� � logjr hui;j j.
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4.2 Result of the FE-based Algorithm(2D)
and Comparison

In this section a comparisonbetween the results from the steepest descent
algorithm (algorithm B using functional F 3(u)) and the results of the FE-
basedalgorithm (algorithm D in Section2.5) is drawn in view of both quality
of �ltering and performance.We usethe test imagesfrom the previoussec-
tion: the \puzzle" image (seeFig. 4.15), the \cards" image with noise(see
Fig. 4.11), and the \cards" image recordedwith distorted sampling points
(seeFig. 4.23).

Fig. 4.30 shows the result of NCBV-�ltering the \puzzle" image basedon
steepest descent with � = 10 (top left) and � = 100(middle left), as well as
the resultsfrom the FE-algorithm with � = 10 (top right) and � = 100(mid-
dle right). Additionally the di�erence between the results of corresponding
valuesof � are printed. It can be recognizedthat for small valuesof � both
algorithms provide comparableresults, seetop row in Fig. 4.30. For larger
valuesof � di�erences at the objects edgesare observable (seedi�erence im-
age of both results presented in Fig. 4.30, bottom left): the result of the
FE-basedalgorithm revealsa stronger smoothing e�ect than the algorithm
basedon the steepest descent. On the other hand cornersaremorepreserved
by the FE-algorithm and thus the curvature minimizing e�ect at thesepoints
is weakened.

For the \cards" image with noise, the samebehavior can be observed, see
Fig. 4.31: For small � (top row) the resultsare comparable,the di�erence of
both result (top right) points out that the result of the FE-basedalgorithm
contains little more remaindersfrom noisethan the result from steepest de-
scent. For larger valuesof � a strongersmoothing e�ects at objects edgesfor
the FE-basedalgorithm can be recognizedin comparisonwith the steepest
descent algorithm.
The e�ect of relatively strong smoothing of edgesfor large � is even more
observable for the results of �ltering the \cards" imagewith distorted sam-
pling points, seeFig. 4.32. We think that this is dueto element-wise constant
approximations of functions a(u) and b(u), cf. Sect.2.5.2.

Besidesthe quality of �ltering weareinterestedin comparingthe performance
of both algorithms. Table 4.2 shows the computation times for the results
presented above.
Note that for the steepest descent algorithm we provided � t tol = 10� 6,
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Computation time (sec)
Test image � Steep. desc.F 2(u) Steep. desc.F 3(u) FE alg.

\Cards" 10 10.20 12.76 3.81
with noise 100 34.16 91.92 5.40

\cards" 10 99.22 122.53 5.17
with dist. 100 165.93 193.27 20.80
\puzzle" 10 249.74 290.50 11.38

100 252.09 286.31 28.95

Table4.3: Computation times of FE-basedalgorithm versussteepest descent
algorithm using F 2(u) and F 3(u).

� F tol = 10� 3 and � utol = 0:001 as well as a maximal number of itera-
tion steps. In caseof the secondtest image the iteration stopped after the
limit of 500stepswasreached and thus the computation times wereapprox-
imately the samefor both valuesof � .

For the computational e�ort of the FE-method, we note the following:
Firstly, we use a �xed number of 50 steps for the �x point iteration and
a maximal number of 100 iterations of the cg-solver used in each step of
the outer iteration. It turned out that it is more e�cien t to reduce the
maximal number of iteration stepsfor the cg-solver in the beginning of the
outer iteration, sincethe initial step size� t in generalis in-appropriate and
is adapted several times. For this adaption a small number of cg-stepsis
su�cien t. Here we used only 10 iteration steps for the cg-iteration during
the �rst 10 stepsof the outer iteration.
Secondly, we investigate the e�ect of � on the computational e�ort. It is
observed that the computation times are smaller for smaller � .

Note that using a �xed number of iteration steps for the outer and inner
iteration would lead to computation times independent from � . In our al-
gorithm we provide maximal numbers of iteration stepstogether with other
criteria to stop the inner and outer iteration, respectively: For the cg-solver,
we provide a threshold for the residual. Experiments show that the number
of stepsneededfor the cg-solver decreaseswith subsequent outer iteration.
In somecaseswe observed that after someouter iteration steps the resid-
ual of the current iterate u(s) is smaller than the threshold provided for the
cg-solver and consequently the cg-solver does not change the iterate , i.e.
u(s+1) = u(s) , which is a criterion to stop the outer iteration.

Note that both e�ects, the decreaseof iterations performedby the cg-solver
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and the early termination lead to an adaption of the computational e�ort to
parameter � , ascan be seenin Table 4.3.

A comparisonbetween the computation times for both algorithms shows a
better performanceof the FE-basedalgorithm as the steepest descent algo-
rithm, but to the disadvantage of lessexact result for large valuesof � .

4.3 Summary

We implemented a steepest minimization of F h(u) basedon di�erent numer-
ical schemesjr hui;j j. The results show that functionals basedon a combi-
nation of right- and left-sided �nite di�erences provide the best results. The
steepest descent method has the drawback of high computational e�ort.

As alternative we implemented an algorithm for solving the optimalit y con-
dition for a minimizer of

R

 f c(u � u� ; jr uj) a semi-implicit iterativ e scheme

and �nite element for discretization. The FE-basedalgorithm shows a better
computational performancethan the steepest descent method with su�cien t
quality of results. Thus for practical applications the FE-basedalgorithm is
recommendable.
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Figure 4.30: Top left: result of the steepestdescent algorithm with functional
F 3(u) and � = 10. Top right: result of the FE-basedalgorithm for � = 10.
Middle left: result of the steepest descent algorithm with functional F 3(u)
and � = 100. Middle right: result of the FE-basedalgorithm for � = 100.
Bottom left: Di�erence image for � = 10. Bottom right: Di�erence image
for � = 100.
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Figure 4.31: Top left: result of the steepestdescent algorithm with functional
F 3(u) and � = 10. Top middle: result of the FE-basedalgorithm for � = 10.
Top right: Di�erence image for � = 10. Bottom left: result of the steepest
descent algorithm with functional F 3(u) and � = 100. Bottom middle:
result of the FE-basedalgorithm for � = 100. Bottom left: Di�erence image
for � = 100.
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Figure 4.32: Top left: result of the steepest descent algorithm on F 3(u) and
� = 10. Top middle: result of the FE-basedalgorithm for � = 10. Top right:
Di�erence image for � = 10. Bottom left: result of the steepest descent
algorithm on F 3(u) and � = 100. Bottom middle: result of the FE-based
algorithm for � = 100. Bottom left: Di�erence imagefor � = 100.
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Additional results

A.1 Results for Chapter 1

Lemma A.1.1. Let a � 0, � � ; � � > 0 and

g(a;s) =
(� � s � � �

a
s )2

c
; G(a) =

Z 1

�1
exp(� g(a;s)) ds

Then
jG(a)j < O(1 +

p
a); G0(0) < 1 :

Proof:
Let

s1 :=
r

� � a
2� �

(A.1)

s2 :=
r

2
� � a
� �

(A.2)

Then

s2 � s1

for s 2 (0; s1] :
� � a
2s

� � � s;
� � a

s
� � � s �

� � a
2s

for s 2 [s2; 1 ) :
� � s
2

�
� � a

s
; � � s �

� � a
s

�
� � s

2

(A.3)
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With (A.3) and exp(:) � 1 on (�1 ; 0] we have
Z 1

�1
exp

�
�

(� � s � � �
a
s )2

c

�
ds = 2

Z 1

0
exp

�
�

(� � s � � �
a
s )2

c

�
ds

� 2
� Z s1

0
exp

�
�

(� �
a
s )2

4c

�
ds+

Z s2

s1

exp
�

�
(� � s � � �

a
s )2

c

�
ds

+
Z 1

s2

exp
�

�
(� � s)2

4c

�
ds

�

� 2
� Z s1

0
exp

�
�

(� �
a
s )2

4c

�
ds+ js2 � s1j

+
Z 1

s2

exp
�

�
(� � s)2

4c

�
ds

�

(A.4)

Moreover with transformation t := 1
s we have

Z s1

0
exp

�
�

(� �
a
s )2

4c

�
ds =

Z 1

1
s1

1
t2

exp
�

�
� 2

� a2 t2

4c

�
dt: (A.5)

Sinceon [s1; 1 ) we have 1
t2 � s2

1, it follows with
R1

0 exp(� b2 x2) dx =
p

�
2b

that Z s1

0
exp

�
�

(� �
a
s )2

4c

�
ds � s2

1

Z 1

1
s1

exp
�

�
� 2

� a2 t2

4c

�
dt

� s2
1

Z 1

0
exp

�
�

� 2
� a2 t2

4c

�
dt

= s2
1

p
4� c

2� � a
= s2

1

p
� c

� � a

(A.6)

Inserting (A.1) into (A.6) gives
Z s1

0
exp

�
�

(� �
a
s )2

4c

�
ds �

� � a
2� �

p
� c

� � a
=

p
� c

2� �
(A.7)

With (A.2) we have

js2 � s1j � s2 =

s
2� � a
� �

= O(
p

a) (A.8)

and
Z 1

s2

exp
�

�
(� � s)2

4c

�
ds �

Z 1

0
exp

�
�

(� � s)2

4c

�
ds =

p
� c

� �
: (A.9)
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Inserting (A.7), (A.8) and (A.9) into (A.4) giveswith C := 6
p

� c
2� �

that

Z 1

�1
exp

�
�

(� � s � � �
a
s )2

c

�
ds � C + O(

p
a);

which provesthe �rst statement.

Let us proof G0(0) < 1 :
SinceG(a) = O(1 +

p
a), the Vitali-Convergence-Theorem(see[1]) asserts

that

G0(a) =
Z 1

�1

@g
@a

(a;s) ds:

Thus with
R1

0 exp(� bx2) dx =
p

�
2b

G0(0) =2
Z 1

0

@g
@a

(0; s) ds

= 2
Z 1

0

2(� � s � � � a
s )

c
� �

s
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�
�

(� � s � � �
a
s )2

c

�
ds

�
�
a=0

= 2
Z 1

0

2� � � �

c
exp

�
�

(� � s)2

c

�
ds

=
4� � � �

p
� c

2c� �
=

2� �
p

�
p

c
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A.2 Results for Chapter 2

Lemma A.2.1. Let jr hui j be as in Example2.4.6 or 2.4.7 and

F c
h(u) =

NhX

i =1

f c(ui � u�
i ; jr hui j) F c(u) =

Z



f c(u � u� ; jr uj);

with f c(� ; a) satis�ying assumptions (a4) and (a5) , being monotonusly
increasing with respect to a and satisfying

jf c(� ; a) � f c(� ; a)j �
p

2� j� � � j: (A.10)

Moreover let
uh := argmin

u2 RN h

F c
h(u)

and uh 2 W 1;p(
) an interpolation as in Examples2.4.6 and 2.4.7.
In particular we have

jr uh(x i )j � jr hui j; i = 1; : : : ; Nh: (A.11)

For every " > 0 there existsh1 > 0 suchthat for every 0 < h � h1

F c(uh) � F c
h(uh) + ": (A.12)

Proof:
Using Theorem2.3.4we can chooseh2 > 0 such that for 0 < h � h2

F h(uh) � F min + ": (A.13)

To prove (A.12) we show that

�
�
�F c(uh) � h

NhX

i =1

f c(ui � u�
i ; jr uh(x i )j)

�
�
�

�
p

2�

  
NhX

i =1

hjr hui j

!

+ CL L0

!

h;

(A.14)

whereCL is the Lipschitz-constant of u� , and

h
NhX

i =1

f c(ui � u�
i ; jr uh(x i )j) � h

NhX

i =1

f c(ui � u�
i ; jr hui j): (A.15)
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To prove (A.14) we consider

�
�
�F (uh) � h

NhX

i =1

f c(ui � u�
i ; jr uh(x i )j)

�
�
� (A.16)

�
NhX

i =1

�
�
�
Z

Q i

f c(uh(x) � u� (x); jr uh(x)j) � hf c(uh(x i ) � u� (x i ); jr uh(x i )j)
�
�
�

| {z }
:= T1;i

+
NhX

i =1

h
�
�
�f c(uh(x i ) � u� (x i ); jr uh(x i )j) � h

NhX

i =1

f c(ui � u�
i ; jr uh(x i )j)

�
�
�

| {z }
:= T2;i

:

T1;i refer to the di�erence betweenusingexactand numerical integration, T2;i

concernthe di�erence betweenuh and uh at the points x i ; i = 1; : : : ; Nh.

We estimateT1;i : Sinceuh is linear on Qi and u� and f c(� ; a) are continuous,
we can �nd yi 2 Qi such that

Z

Q i

f c(uh(x) � u� (x); jr uh(x)j) = hf c(uh(yi ) � u� (yi ); jr uh(yi )j): (A.17)

Thus

T1;i = h
�
�
� f c(uh(yi ) � u� (yi ); jr uh(yi )j) � f c(uh(x i ) � u� (x i ); jr uh(x i )j)

�
�
�:

Using the triangle inequality, it follows that

T1;i � h
�
�
�f c(uh(yi ) � u� (yi ); jr uh(yi )j)

� f c(uh(~x i ) � u� (~x i ); jr uh(~x i )j)
�
�
�

+ h
�
�
� f c(uh(~x i ) � u� (~x i ); jr uh(~x i )j)

� f c(uh(x i ) � u� (x i ); jr uh(x i )j)
�
�
�

(A.18)

From (A.10) using that r uh(:) = r uh(x i ) on Qi it follows that for z 2
Qi ; i = 1; : : : ; Nh

h
�
�
�f c(uh(z) � u� (z); jr uh(z)j) � f c(u(~x i ) � u� (~x i ); jr uh(x i )j)

�
�
�

�
p

2�h
�

juh(z) � uh(~x i )j + ju� (z) � u� (x i )j
�
:

(A.19)
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Sinceuh is linear on Qi and u� is Lipschitz-continuous with constant CL it
follows from (A.19) that

h
�
�
�f c(uh(z) � u� (z); jr uh(z)j) � f c(u(~x i ) � u� (~x i ); jr uh(x i )j)

�
�
�

�
p

2�h 2(jr uh(x i )j + CL ):
(A.20)

Using (A.20) for z = yi and z = x i in (A.18) it follows that

T1;i �
p

2�h 2(jr uh(x i )j + CL ) (A.21)

and thus with (A.11)

T1;i �
p

2� h2(jr hui j + CL ): (A.22)

For T2;i it follows from (A.10) that

T2;i = h
�
�
�f c(ui � u�

i ; jr u(x i )j) � f c(uh(x i ) � u(x i )� ; jr uh(x i )j)
�
�
�

�
p

2� hjui � uh(x i )j + ju�
i � u� (x i )j:

(A.23)

Using the Lipschitz-continuity of u� it follows that

T2;i �
p

2� h (jui � uh(x i )j + hCL ) : (A.24)

With
jui � uh(x i )j � jui � uh(~x i )j + juh(x i ) � uh(~x i )j

�
�

hjr hui j +
h
2

jr uh(x i )j
�

it follows from (A.24) that

T2;i �
p

2�h 2 (jr hui j + jr uh(x i )j + CL ) :

Using (A.11) we �nd that

T2;i �
p

2� h2 (jr hui j + CL ) : (A.25)

Inserting (A.22) and (A.25) in (A.16) gives

�
�
�F c(uh) � h

NhX

i =1

f c(ui � u�
i ; jr u(x i )j)

�
�
�

�
p

2�

  
NhX

i =1

hjr hui j

!

+ Nh h CL

!

h

�
p

2�

  
NhX

i =1

hjr hui j

!

+ L0 CL

!
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which proves(A.14).

To prove (A.15) we note that f c(� ; :) is monotonouslyincreasingon [0; 1 ),
thus with (A.11) we have

f c(ui � u�
i ; jr uh(x i )j) � f c(ui � u�

i ; jr hui j);

from which (A.15) follows.

As in the examplebefore,from Lemma 2.4.5and (A.13) we have an a-priori
bound on

P Nh
i =1 hjr hu(x i )j: We have for h � h1 that

NhX

i =1

hjr hu(x i )j �
1
co

F c
h(uh) �

1
co

(F min + ") + 2L0

and thus in (A.14) we can choose h2 > 0, h2 � h1 such that for every
0 < h � h2

�
�
�F c(uh) �

NhX

i =1

f c(ui � u�
i ; jr uh(x i )j)

�
�
� � ": (A.26)

From (A.26) it follows that

F c(uh) �
NhX

i =1

f c(ui � u�
i ; jr uh(x i )j) + ": (A.27)

Using (A.15) it follows from (A.27) that for h � h2

F c(uh) �
NhX

i =1

f c(ui � u�
i ; jr uh(x i )j) + "

�
NhX

i =1

f c(ui � u�
i ; jr hui j) + " � F c

h(uh) + ":
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Lemma A.2.2. Let " > 0, jxj" =
p

jxj2 + "2,

f c(� ; jaj) :=

(
� 2

2jaj + � jaj if
p

2� jaj > j� j;
p

2� j� j else
;

and

f " (� ; jaj" ) =

(
j � j2"
2jaj + � jaj" if

p
2� jaj" > j� j"p

2� j� j" else
:

Then there existsC > 0 dependingonly on � suchthat for every � ; a 2 R

jf " (� ; jaj" ) � f c(� ; a)j � C":

Proof:
We have

jf " (� ; jaj" ) � f c(� ; jaj)j

� jf " (� ; jaj" ) � f c(� ; jaj" )j| {z }
=: T1

+ jf c(� ; jaj" ) � f c(� ; jaj)j
| {z }

=: T2

: (A.28)

Note that jxj" � jxj for x 2 R and thus

jxj" � jxj =
p

jxj2" � 2jxj jxj" + jxj2

=
p

jxj2 + "2 � 2jxj jxj" + jxj2

=
p

2jxj2 + "2 � 2jxj jxj"

�
p

2jxj2 + "2 � 2jxj2 = ":

: (A.29)

To estimate term T1 we have to check three cases:

Case 1:
Let

p
2� jaj" � j� j � j� j" . Then

f " (� ; jaj" ) =
p

2� j� j" ; f c(� ; jaj" ) =
p

2� j� j"

and, sincejaj" > jaj,
T1 =

p
2� (jaj" � jaj): (A.30)

From (A.30) it follows with (A.29) that

T1 �
p

2� ":
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Case 2:
Let j� j <

p
2� jaj" � j� j" . Then

f " (� ; jaj" ) =
p

2� j� j" ; f c(� ; jaj" ) =
� 2

2jaj"
+ � jaj"

and

T1 :=
�
�
�
p

2� j� j" �
� 2

2jaj"
� � jaj"

�
�
� :

We have

p
2� j� j" �

� 2

2jaj"
� � jaj" �

p
2� j� j" �

p
2�
2

j� j �
�

p
2�

j� j"

�
p

2� j� j" �

p
2�
2

j� j" �

p
2�
2

j� j" = 0

(A.31)

and

p
2� j� j" �

� 2

2jaj"
� � jaj" �

p
2� j� j" �

p
2�
2

� 2

j� j"
�

�
p

2�
j� j (A.32)

From (A.32) using j � j
j � j "

� 1 and (A.29) (with x = � ) it follows that

p
2� j� j" �

� 2

2jaj"
� � jaj" �

p
2� j� j" �

p
2�
2

j� j �

p
2�
2

j� j

�
p

2� (j� j" � j� j)) �
p

2�":

(A.33)

From (A.31) and (A.33) we have that

T1 �
p

2� ":

Case 3:
Let

p
2� jaj" > j� j" > j� j. Then

f " (� ; jaj" ) =
j� j2"
2jaj"

+ � jaj" ; f c(� ; jaj" ) =
� 2

2jaj"
+ � jaj"

and

T1 =
�
�
�
� 2 + "2

2jaj"
�

� 2

2jaj"

�
�
� : =

"2

2jaj

Since
p

2� jaj > j� j" and j� j" � " it follows that

T1 �

r
�
2

"2

j� j"
�

r
�
2

":



152 APPENDIX A. ADDITIONAL RESULTS

Thus for each casewe have
T1 � C": (A.34)

For T2 we derive from (a4) with p = 1, using jaj " > jaj and (A.29) that

T2 �
p

2�
�
�
� ja" j � jaj

�
�
� =

p
2� (ja" j � jaj) �

p
2�" (A.35)

Inserting (A.34) and (A.35) in (A.28) we derive

jf " (� ; jaj" ) � f c(� ; jaj)j � C"



CURRICULUM VIT AE 153

Curriculum Vitae

Name Frank Lenzen
Date of birth October 15th , 1974
Placeof birth Br•uhl (Rheinland), Germany
Nationalit y German
Martial status unmarried

Education

1981 - 1985 Elementary School in Weilerswist
1985 - 1994 Ville-Gymnasium Erftstadt
1994 - 1995 Civil servicein Youth Center \Mobil �e", Euskirchen
1995 - 2002 Study of Mathematics in Bonn

Thesis: \Rekonstruktion von DNA-Strukturen"
Degree:Diplom-Mathematiker

2002 - now Research assistant at the Institute of Computer Science,
Innsbruck

Publications

� with S. Schindler and O.Scherzer: Automatic Detection of Arcs and
Arclets formed by Gravitational lensing, A&A, vol. 416, p. 391-401,
2004

� with O. Scherzer: Tikhonov Type Regularization Methods: History and
Recent Progress, ProceedingsEccomas,2004

� with M. Grasmair, A. Obereder, O. Scherzer and M. Fuchs, A Non-
ConvexPDE Scale Space, Proceedingsof 5th International Conference
on ScaleSpaceand PDE Methods in Computer Vision 2005, LNCS,
vol. 3459,pp. 303-315,Springer,2005

� with O. ScherzerandS.Schindler: RobustReconstruction from Chopped
and Nodded Images, A&A, vol. 443,pp. 1087-1093,2005



154 CURRICULUM VIT AE

� with S. Leimgruber and O. Scherzer: Automatic Detection and Count-
ing of Small Airborne Dust Particles, Proceedingsof the 30thworkshop
of the Austrian Pattern Recognition, books@ocg.at, vol. 209, pp. 29-
36, 2005

Edited Volumes

� with O. Scherzer and M. Vincze: Proceedings of the 30thworkshopof
the Austrian Pattern Recognition, books@ocg.at, vol. 209,2005

Workshops

� \Optimization, Variational Methods for InverseProblems", Innsbruck,
Austria, April 22th -23th , 2002

� \Computational methods in InverseProblems", Strobl, Austria, Au-
gust 25th - 30th , 2002

� \Computational Methods For Algebraic Spline Surfaces",Kefermarkt,
Austria, September 20th - October 3rd, 2003,Title of talk: \Automatic
Detection of arcs formed by Gravitational Lensing"

� \Adv ancesin Numerical Algorithms", Graz, Austria, September 10th -
13th , 2003,Title of talk: \Automatic detection of gravitational arcs in
astronomicaldata using anisotropic di�usion and segmentation"

� \Shape and Sizein Tumor growth", Torino, Italy, March 5th , 2004

� \Mathematical Challengesin Astronomical Imaging", LosAngeles,USA,
January 26th - 30th , 2004

� \In troductional Workshopin Mathematical, Computational andStatis-
tical Aspectsof ImageAnalysis", Berkeley, USA, February 24th - 28th ,
2005

� \ScaleSpaceandPDE Methodsin ComputerVision", 5th International
Conference\ Scale-Space2005", Hofgeismar,Germany, April 7th - 9th ,
2005,Poster: \A Non-Convex ScaleSpace"



CURRICULUM VIT AE 155

� \Digital Imaging and Pattern Recognition" - 30thWorkshopof the Aus-
trian Association of Pattern Recognition", Obergurgl, Austria, March
1st- 3rd, 2006

� \Statistical InverseProblems", G•ottingen, Germany, March 23rd- 25th ,
2006,Poster: \Non-Convex Regularization"

� \3 rd High-endVisualization workshop", Obergurgl,Austria, April 26th -
28th , 2006,Title of talk: \Automatic detection of Arcs"

Committee Mem berships

� Member of program committee of the 30th Workshop of the Austrian
Association of Pattern Recognition,Obergurgl, Austria, March 1st- 3th ,
2006



156 CURRICULUM VIT AE



Ac knowledgmen ts

I want to thank Prof. Otmar Scherzer for giving me the opportunit y to work
at the Institute of Computer Sciencein Innsbruck and for supervising this
thesis, Prof. Sabine Schindler for her help concerningastrophysical topics,
the \Tiroler Zukunftsstiftung", which provided the �nancial support for my
position at the Institute between 2002 and 2005, my colleaguesat work for
the scienti�c discussionsabout the topic, for the lunch breaks and other
social events, Andreas Kraxner for technical support, Markus Grasmair for
help with the Latex style �les, Thomas Erben, Peter Schneider and Ulrich
K•au
 for kindly providing the astronomical imagesand �nally my family and
especially my life partner Bettina for supporting me throughout the time.



158 CURRICULUM VIT AE



Bibliograph y

[1] H. W. Alt. Lineare Funktionalanalysis. Springer Verlag, 3rd edition,
1999.

[2] M. Bartelmann, A. Huss,J. M. Colberg, A. Jenkins, and F. R. Pearce.
Arc Statistics with Realistic Cluster Potentials. IV. Clustersin Di�eren t
Cosmologies.A& A, 330:1{9, February 1998.

[3] H. Bauer. Wahrscheinlichkeitstheorie. De-Gruyter-Lehrbuch, Berlin,
4th edition, 1991.

[4] J.M. Beckers. Imaging with array detectorsusing chopping and other
forms of di�erential detection. ProceedingsSPIE 2198, 2198:1432,1994.

[5] M. Bertero, P. Boccacci, A. Custo, C. De Mol, and M. Robberto. A
fourier-basedmethod for the restoration of chopped and noddedimages.
A&A , 406:765{772,2003.

[6] M. Bertero, P. Boccacci,F. Di Benedetto,and M. Robberto. Restoration
of chopped and nodded imagesin infrared astronomy. IP, 15:345{372,
1999.

[7] M. Bertero, P. Boccacci, and M. Robberto. Wide �eld imaging at
mid-infrared wavelengths:Reconstructionof chopped and noddeddata.
PASP, 112:1121{1137,2000.

[8] M. Bertero, P. Boccacci,andM. Robberto. Inversionof second-di�erence
operators with application to infrared astronomy. IP, 19:1427{1443,
2003.

[9] E. Bertin. SExtractor v.2.1.3 User's Guide. Institut d'Astrophysique&
Observatoire de Paris, 1994.

[10] E. Bertin and S. Arnouts. Sextractor: Software for sourceextraction.
A&A , 117:393{404,1996.

159



160 BIBLIOGRAPHY

[11] M. Bradac, T. Erben, P. Schneider, H. Hildebrandt, M. Lombardi,
M.Schirmer, J.M. Miralless,D.Clowe, and S.Schindler. Strong and weak
lensingunited ii: the cluster massdistribution of the most x-ray lumi-
nouscluster rx j1347.5-1145.A&A , 437,2005.

[12] A. Buades, B. Coll, and J.M. Morel. A Review of Image Denoising
Algorithms, with a New One. SIAM Multiscale Model Simul., 4:490{
530,2004.

[13] D. Calvetti, F. Sgallari, and E. Somersalo.ImageInpainting with Struc-
tural Bootstrap Priors. Imageand Vision Computing (to appear), 2006.

[14] F. Catte, P.-L. Lions, J.-M. Morel, and T.Coll. Imageselective smooth-
ing and edgedetectionby nonlineardi�usion. SIAM,J. Numerical Anal-
ysis, 29:182{193,February 1992.

[15] R.H. Chan, L. Shen,and Z. Shen. Restoration of chopped and nodded
imagesby wavelet frames. Research Report, Dep. of Math., University
of Hong Kong, 2003-09(283), 2003.

[16] B. Dacorogna. Direct Methods in the Calculusof Variations. Springer,
1989.

[17] M. H. DeGroot and M.J.Schervish. Probability and Statistics. Addison
Wesley, 3 edition, 2002.

[18] J. P. Emerson.Star formation and techniquesin infrared and mm-wave
astronomy. Lecture Notes in Physics,Springer, 431:125,1994.

[19] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse
Problems. Kluwer, Dordrecht, 1996.

[20] L.C. Evans and R.F. Gariepy. Measure Theory and Fine Properties of
Functions. CRC{Press, Boca Raton, 1992.

[21] B. Fort and Y. Mellier. Arc(let)s in Clustersof Galaxies.AAPR, 5:239{
292,1994.

[22] B. Fort, Y. Mellier, and M. Dantel-Fort. Distribution of Galaxies at
Large Redshift and CosmologicalParameters from the Magni�cation
Bias in CL 0024+1654.AAP, 321:353{362,May 1997.

[23] M. Franx, G. D. Illingworth, D. D. Kelson, P. G. van Dokkum, and
K. Tran. A Pair of Lensed Galaxies at z=4.92 in the Field of CL
1358+62. ApJ, 486:L75+, September 1997.



BIBLIOGRAPHY 161

[24] K. Frick and O. Scherzer. Application of non-convex bv regularization
for imagesegmentation. Infmath Imaging Preprints, 35, 2005.

[25] A. Glasse.Michelle - User Manual.

[26] M. Grasmair. Relaxation of Nonlocal Integrals in Imaging. PhD thesis,
Institute for , University of Innsbruck, 2006(to appear).

[27] M. Grasmair, F. Lenzen,A. Obereder,O. Scherzer, and M. Fuchs. A
non-convex PDE scalespace.In Proceedings of 5-th International Con-
ference on Scale Space and PDE Methods in Computer Vision 2005,
volume 3459,pages303{315.Springer,2005.

[28] A. B. Hamzaand H. Krim. A Variational Approach to Maximum A Pos-
teriori Estimation for ImageDenosing.In Energy Minimization Methods
in Computer Vision and Pattern Recognition, volume 2134 of LNCS.
springer,2001.

[29] AssafHoresh,Eran O. Ofek, Dan Maoz,Matthias Bartelmann, Massimo
Meneghetti, and Hans-Walter Rix. The lensedarc production e�ciency
of galaxy clusters: A comparisonof matched observed and simulated
samples.ApJ, 633:768{780,2005.

[30] U. Kaeu
. Observingextendedobjects with chopping restrictions on 8m
classtelescopesin the thermal infrared. ESOConf. and WorkshopProc.:
Calibrating and UnderstandingHSR and ESO Instruments, 53:159{163,
1995.

[31] J. Kaipio and E. Somersalo.Statistical and ComputationalInverseProb-
lems, volume 160of Applied Mathematical Sciences. Springer,2005.

[32] B. Kaltenbacher, A. Neubauer,and O. Scherzer. Iterative Regularized
Methods for Nonlinear Il l-posed Problems. submitted, 2005.

[33] R. Kaufmann and N. Straumann. Giant arc statistics and cosmological
parameters.Annals Phys., 11:507{510,2000.

[34] P.M. Lee. BayesianStatistics: An Intr oduction. Edward Arnold, 1992.

[35] F. Lenzenand O.Scherzer. Tikhonov type regularization methods: His-
tory and recent progress.In Proceedings Eccomas, 2004.

[36] F. Lenzen,O. Scherzer, and S. Schindler. Robust reconstruction from
chopped and nodded images.A&A , 443,2005.



162 BIBLIOGRAPHY

[37] F. Lenzen,S. Schindler, and O.Scherzer. Automatic detection of arcs
and arclets formed by gravitational lensing. A&A , 416,2004.

[38] H. Linz, B. Stecklum, T. Henning, P. Hofner, and B. Brandl. The
g9.62+0.19-fhot molecularcore- The infrared view on very youngmas-
sive stars. A&A , 429:903{931,2005.

[39] R. Lynds and V. Petrosian. Giant Luminous Arcs in Galaxy Clusters.
BAAS, 18:1014{+, September 1986.

[40] Y. Mellier. Probing the Universewith Weak Lensing. ARAA , 37:127{
189,1999.

[41] Bob O'Malley. Book reviews. SIAM Review, 48(1):149{204, 2006.
(H.W.Engl, reviewof: Statistical and Computational InverseProblems).

[42] W. R. Pestman. Mathematical Statistics. de Gruyter, 1998.

[43] M. Pettini, C. C. Steidel, K. L. Adelberger, M. Dickinson, and M. Gi-
avalisco. The Ultraviolet Spectrum of MS 1512-CB58:An Insight into
Lyman-Break Galaxies. ApJ, 528:96{107,January 2000.

[44] M. Robberto, S.V.W. Beckwith, N. Panagia, S.G. Patel, T.M. Herbst,
S. Ligori, A. Custo, P. Boccacci,and M. Bertero. The orion nebula in
the mid-infrared. AJ, 129:1534{1563,2005.

[45] L.I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based
noiseremoval algorithms. PhysicsD, pages259{268,1992.

[46] I. Saviane and V. Doublier. TIMMI2: User Manual, Nov 2005.

[47] O. Scherzer and J. Weickert. On regularization and di�usion �ltering.
Journal of Mathematical Imaging and Vision, 12:43{63,2000.

[48] S. Seitz, R. P. Saglia, R. Bender, U. Hopp, P. Belloni, and B. Ziegler.
The z=2.72 galaxy cB58: a gravitational fold arc lensedby the cluster
MS1512+36.MNRAS, 298:945{965,August 1998.

[49] P. Soille. Morphological Image Analysis. Springer,2 edition, 2003.

[50] M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis and
Machine Vision. PWS Publ., 2 edition, 1999.

[51] G. Soucail,B. Fort, Y. Mellier, and J. P. Picat. A blue Ring-like Struc-
ture, in the Center of the A 370Cluster of Galaxies.A&A , 172:L14{L16,
January 1987.



BIBLIOGRAPHY 163

[52] J. Wambsganss.Gravitational Lensing in Astronomy. Living Reviews
in Relativity, 1:12{+, November 1998.

[53] A. Webb. Statistical Pattern Recognition. Wiley, 2002.

[54] J. Weickert. Anisotropic Di�usion in ImageProcessing. TeubnerVerlag,
1998.

[55] G. Winkler. Image Analysis, Random Fields and Markov Chain Monte
Carlo Methods. Springer,2 edition, 2003.



Index

A
algorithm

A . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
B . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
C . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
D . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
FE . . . . . . . . . . . . . . . . . . . . . 76, 137

ant nebula. . . . . . . . . . . . . . . . . . . . 107
arc/arclet . . . . . . . . . . . . . . . . . . . . . . 81
arti�cial structures. . . 98, 105,109
assumption

(a1) . . . . . . . . . . . . . . . . . . . . . . . . . 8
(a2) , (a3) . . . . . . . . . . . . . . . . . .39
(a4) , (a5) . . . . . . . . . . . . . . . . . 39
(a6) . . . . . . . . . . . . . . . . . . . . . . . 49

automatic detection. . . . . . . . . . . .84

B
Bayesianstatistics. . . . . . . . . . . 2, 85
BV semi-norm. . . . . . . . . . . . . . . . 124

C
CCD-sensor. . . . . . . . . . . 84, 97, 101

photon counting . . . . . . . . . . . 101
chopping. . . . . . . . . . . . . . . . . . . . . . .94

amplitude. . . . . . . . . . . . . . . . . . . 94
classi�cation . . . . . . . . . . . . . . . . . . . 84
cluster of galaxies. . . . . . . . . . . . . . 81
color images. . . . . . . . . . . . . . . . . . . xv
computation times. . . . . . . . . . . . 113
constraint

non-negativity . . . . . . . . . .96, 100
convergence

numerical. . . . . . . . . . . . . . . . . . 112
convex. . . . . . . . . . . . . . . . . . . . . . . . . 39
convex hull . . . . . . . . . . . . . . . . . . . . 35
convexi�cation . . . . . . . . . . . . . . . . . 35
curvature

minimization . . . . . . . . . . . . . . .126

D
dark matter . . . . . . . . . . . . . . . . . . . .82
denoising. . . . . . . . . . . . . . . . . . . . . .xiii
di�usion

anisotropic. . . . . . xiii, 84, 87, 88
linear . . . . . . . . . . . . . . . . . . . . . . xiii
Perona-Malik. . . . . . . . . . . . . . .xiii

distribution
empirical. . . . . . . . . . . . . . . . . . . .19
Gaussian. . . . . . . . . . . . . . . . . . . . 86
Laplacian. . . . . . . . . . . . . . . . . . . 21
Rayleigh . . . . . . . . . . . . . . . . . . . . 22

distributions
absolutely continuous. . . . . . . . .3

E
eccentricit y . . . . . . . . . . . . . . . . . . . . 88
elongatedobjects . . . . . . . . . . . . . . 89

F
�nite di�erences. . . . . . . . . . . . . 8, 70
�t

Gaussian. . . . . . . . . . . . . . . . . . . . 19
Laplacian. . . . . . . . . . . . . . . . . . . 19

function
F h(u) . . . . . . . . . . . . . . . . . . . . . . . 28

164



INDEX 165

f (� ; A) . . . . . . . . . . . . . . . . . . . . . . 28
bilinear . . . . . . . . . . . . . . . . . . . . . 76

function spaces. . . . . . . . . . . . . . . .xvi
functional

F (u) . . . . . . . . . . . . . . . . . . . . 31, 35
F c(u) . . . . . . . . . . . . . . . . . . . . . . . 31
F c

h(u) . . . . . . . . . . . . . . . . . . . . . . .32
F h(u) . . . . . . . . . . . . . . . . . . . . . . .31

future work . . . . . . . . . . . . . . . . . . . . xv

G
galaxy. . . . . . . . . . . . . . . . . . . . . . . . . 81
galaxy cluster. . . . . . . . . . . . . . . . . . 81

A1689. . . . . . . . . . . . . . . . . . . . . . .88
RXJ1347-1145. . . . . . . . . . .82, 83

gravitational lensing. . . . . . . . . . . 81
grid . . . . . . . . . . . . . . . . . . . . . 5, 76, 85

H
histogram. . . . . . . . . . . . . . . . . . 17, 87

modi�cation . . . . . . . . . . . . . . . . 84

I
i.i.d. . . . . . . . . . . . . . . . . . . . . . . . . .6, 11
imageprior . . . . . . . . . . . . . . see prior
imageprocessing. . . . . . . . . . . . . . xiii
implementation . . . . . . . . . . . . . . . . 69
infrared observations. . . . . . . . . . . 94
invariance

mirroring . . . . . . . . . . . . . . . . . . . 73
rotation . . . . . . . . . . . . . . . . . . . . . 73

invariances. . . . . . . . . . . . . . . . . . . . .xv
inverseproblem. . . . . . . . . . . . . . . xiii
iteration

inner. . . . . . . . . . . . . . . . . . . . . . . .79
Landweber. . . . . . . . . . . . . . . . . . 98
Lavrentiev . . . . . . . . . . . . . . . . . . 98
outer. . . . . . . . . . . . . . . . . . . . . . . .79

L
level lines. . . . . . . . . . . . . . . . . . . . . . . 7
linearization . . . . . . . . . . . . . . . . . . . 78

log-�lter . . . . . . . . . . . . . . . . . . . . . . 135
log-prior . . . . . . . . . . . . . . . . . . . . . . . 23

M
MAP estimator . . xiv, xvi, 2, 4, 28
Markov Random Field . . . . . . . . . 16
max. likelihood estim.. . . . . xiv, 98
Mean Curvature Flow. . . . . xv, 126
median. . . . . . . . . . . . . . . . . . . . . . . . 99

�ltering . . . . . . . . . . . . . . . . 99, 109
Menzel I I I nebula. . . . . . . . . . . . . 107
meshsize. . . . . . . . . . . . . . . . . . . . . . . 5
method

blockedLandweber-Kacmarz100
cg. . . . . . . . . . . . . . . . . . . . . . . 78, 99
cg-based. . . . . . . . . . . . . . . .99, 105
FE . . . . . . . . . . . . . . . . . 69, 76, 137
method (A) . . . . . . . . . . . . . . . . . 98
method (B) . . . . . . . . . . . . . . . . . 98

method:FE. . . . . . . . . . . . . . . . . . . .xvi
methods

di�usion . . . . . . . . . . . . . . . . . . . .xiii
variational . . . . . . . . . . . . . . . . . .xiv

minimizer
existence. . . . . . . . . . . . . . . . . . . . 37

minimizing sequence. . . . . . . . . . . 37
upper bound. . . . . . . . . . . . . . . . 55

multiple chopping data. . .100,106

N
NCBV-�lter . . . . . . . . . . 69, 111,128
NCBV-functional . . . . . . . . . . xv, 32
NCH-�lter . . . . . . . . . . . . . . . 128,130
NCH-functional . . . . . . . . . . . . . . . . 32
nodding. . . . . . . . . . . . . . . . . . . . . . . .95
noise

atmospheric. . . . . . . . . . . . . . . . . 94
background. . . . . . . . . . . . . . . . 101
dark. . . . . . . . . . . . . . . . . . . .95, 101
Gaussian. . . . . . . . . . . . . . . . . 6, 17
model for chopping and n. . 101



166 INDEX

models. . . . . . . . . . . . . . . . . . . 6, 28
Poisson. . . . . . . . . . . . . . . . . . . . 101
read-out . . . . . . . . . . . . . . . . . . . 101
sensitivity . . . . . . . . . . . . . 113,120
thermal . . . . . . . . . . . . . . . . 94, 101

numerical scheme. . . . . . . . . . . . . . 70

O
object detection. . . . . . . . . . . . . . . .84
optimalit y condition. . . . . . . . . . .xiv

P
parameterestimation. . . . . . . . . .xiv
parametermodel. . . . . . . . . . . . . . xiv
photon counting . . . . . . . . . . . . . . 101
pixels. . . . . . . . . . . . . . . . . . . . . . . . . . 15
prior . . . . . . . . . . . xiv, 15, 21, 28, 86

Gaussian. . . . . . . . . . . . . . . . . . . . 21
Laplacian. . . . . . . . . . . . . . . . . . . 21
log . . . . . . . . . . . . . . . . . . . . . 23, 135
structural . . . . . . . . . . . . . . . . . . . 86

probability . . . . . . . . . . . . . . . . . . . . . . 1
conditional . . . . . . . . . . . . . . . . . . . 2
conditional density . . . . . . . . . . . 3
density function . . . . . . . . . . . . . . 3
joint . . . . . . . . . . . . . . . . . . . . . . . . . 1

R
random vector . . . . . . . . . . . . . . . . . . 1
realization . . . . . . . . . . . . . . . . . . . . . . 1
regularization. . . . . . . . . . . . . . . . . xiii

parameter. . . . . . . . . . . . . . . . . . xiv
robustness. . . . . . . . . . . . . . . . . . . . . 98

S
sampling points . . . . . . . . . . . . . . . . . 7

distorted . . . . . . . . . . . . . . 128,129
shifted . . . . . . . . . . . . . . . . . . . . . . 16

semi-continuity
weakly lower . . . . . . . . . . . . . . . . 35

SExtractor . . . . . . . . . . . . . . . . . . . . .90
signal-to-noiseratio, SNR. . . . . 102

sourceextraction. . . . . . . . . . . . . . .90
starting point . . . . . . . . . . . . . . . . . . 75
steepest descent . . . xvi, 69, 75, 111
step sizecontrol . . . . . . . . . . . . 75, 78
stopping criterion . . . . . . . . . 75, 112
structure tensor. . . . . . . . . . . . . . . . 86

T
Theoremof Bayes. . . . . . . . . . . . . . . 4
time step. . . . . . . . . . . . . . . . . . . . . .xiv
triangulation . . . . . . . . . . . . . . . . . . .76
TV-�lter . . . . . . . . . . . . 127,129,130

W
wavelet

decomposition. . . . . . . . . . . . . . .95


