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Abstract. For image filtering applications, it has been observed recently
that both diffusion filtering and associated regularization models provide
similar filtering properties. The comparison has been performed for regu-
larization functionals with convex penalization functional. In this paper
we discuss the relation between non-convex regularization functionals
and associated time dependent diffusion filtering techniques (in partic-
ular the Mean Curvature Flow equation). Here, the general idea is to
approximate an evolution process by a sequence of minimizers of itera-
tively convexified energy (regularization) functionals.
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1 Introduction

Let A : X → 2X be a maximal monotone operator on a real Hilbert space X.
Here, we call A maximal monotone, if for every x, x′ ∈ X the implication

x′ ∈ Ax ⇔ 〈x′ −Ay, x− y〉 ≥ 0 for every y ∈ X

holds. Then there exists a solution of

du

dt
(t) +A(u(t)) ∋ 0 (t ≥ 0) , u(0) = u0 . (1)

For the precise mathematical formulation of this statement we refer to Zeidler
[1, Theorem 32.P]. The solution of (1) is given by

u(t) = lim
N→∞

(

I +
t

N A

)−N

u0 .

See e.g. Crandall & Liggett [2]. We define

uN
k :=

(

I +
t

N A

)−k

u0 (k = 0, 1, . . . ,N ) and uN := uN
N .



From this formula it is evident that uN
k solves

u+
t

N A(u) ∋ uN
k−1 (k = 1, . . . ,N ) . (2)

An important example of a maximal monotone operator is the subdifferential
A = ∂J of a convex functional J : X → R ∪ {+∞} defined on a real Hilbert
space X. In this case (1) is a gradient flow equation and uN

k minimizes the
functional

u → 1

2
‖u− uN

k−1‖2L2(Ω) +
t

N J(u) (k = 1, 2, . . . ,N ) . (3)

That is, the solution of the gradient flow equation can be approximated by
iterative regularization.

In [3–5] we performed a systematic comparison of regularization, iterative
regularization, and the solution of the according gradient flow equation for image
filtering. The experiments show similar solutions for all three methods. Recently
Mrázek, Steidl, and Weickert [6, 7] proved analytically for the one-dimensional
discrete bounded variation functional J(u) that both regularization and the solu-
tion of the discretized gradient flow equation are exactly the same. The similarity
relation between the three methods has been validated for gradient flow equa-
tions with A = ∂J maximal monotone (which follows from the convexity of J).
In this paper we show that the solution of the Mean Curvature Motion (MCM)

dv

dt
(t) = |∇v(t)|∇ ·

( ∇v(t)

|∇v(t)|

)

(t > 0) , v(0) = v0 , (4)

is approximated by the N -th minimizer of a non-convex iterative regularization
technique, where in each iteration step a regularization parameter α = T/N is
used. Here, in contrast to (2) we determine uN

k by solving an equation of the
form

u+
t

N A t
N
(u) ∋ uN

k−1 .

Note that the operator A now depends on t/N . Provided that the limit uN = uN
N

exists for t/N → 0, we expect to have a solution of

∂u

∂t
(t) ∈ − lim

s→0+
As(u(t)) .

This provides a formal relation between the Mean Curvature Flow equation by
mimicking nonlinear semi-group theory.

The MCM equation has been extensively studied. For instance, it is well-
known that it attains a unique viscosity solution for given continuous and bounded
initial data v0 : Rn → R (see e.g. Evans [8]). Only in very special cases the so-
lution can be calculated analytically. Invariance properties and the use of MCM
for image processing applications have been studied by Alvarez & Guichard &
Lions & Morel [9]. MCM is an example of a morphological filtering technique.
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Therefore, we call the associated non-convex variational principle investigated
in this paper morphological regularization method.

In [10] a variational form related to the mean curvature flow equation has
been derived and a relaxation technique has been used to prove existence of a
generalized minimizer. This approach is impractical for a numerical solution since
the functional has to be redefined via Γ -limits first, and the relaxed functional
eventually has to be minimized. The variational formulation reveals interesting
properties (see [11]): it can be motivated as a regularization functional to clean
noisy images with random perturbations of the level lines.

The outline of this paper is as follows: In Section 2 we recall the formal rela-
tion between the Mean Curvature Flow equation and the according variational
principle. In Section 3 we prove well-posedness of iterative regularization based
on the concept of convexification. Moreover, a nontrivial part is the characteri-
zation of the relaxed functional on the nonreflexive Banach space of functions of
bounded variation. Previously, we computed the convex envelope for approxima-
tions on Sobolev spaces (see [13, 12, 11]). In Section 4 we discuss the numerical
minimization of the nonconvex variational principle and review solving the Mean
Curvature Flow equation. The results extend previous numerical experiments in
[10] for the minimization of the variational principles, which have been imple-
mented for relatively large regularization parameters. In Section 5 we compare
iterative regularization and the solution of the Mean Curvature Flow equation.

2 The Link between MCM and Iterative Regularization

In order to establish the link relation between Mean Curvature Flow and varia-
tional forms we study the following energy functional:

I(u) := Iα,u0(u) :=

∫

f
(

x, u(x),∇u(x)
)

dx (α > 0) , (5)

where f : Ω × R× R
n → R ∪ {+∞} is defined by

f(x, ξ, A) =

(

ξ − u0(x)
)2

2|A| + α|A| . (6)

We can interpret I as a regularization functional with fit-to-data term
∫ (u−u0)2

2|∇u|

and the total variation semi-norm as fidelity term.
Aside from the theoretical interest in this functional we use it for solving

imaging problems with discontinuous solutions. This motivates the usage of the
total variation semi-norm for penalization, which has turned out to be quite
successful for this purpose (cf. Rudin & Osher & Fatemi [14, 15]).

The following computations are purely formal and not mathematically rig-
orous. The steepest descent direction of the functional I is

∂I(u) :=
u− u0

|∇u| +∇ ·
((

(u− u0)2

2|∇u|2 − α

) ∇u

|∇u|

)

. (7)
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Therefore, a minimizer of I satisfies the optimality condition

u+ αAα(u) := u+ α|∇u|∇ ·
((

(u− u0)2

2α|∇u|2 − 1

) ∇u

|∇u|

)

∋ u0 . (8)

We set α = t/N and perform iterative regularization by minimization of the
functionals Ikt/N , (k = 1, . . . ,N ), defined by Ikt/N := It/N ,uN

k−1
with uN

0 := u0.

The minimizer of Ikt/N is denoted by uN
k .

With the change of notation ∆T := T/N , v(T ) := uN
N , v(T −∆T ) := uN

N−1,
we find from the according optimality condition for the functional INT/N (cf. (8))

which we multiply by |∇v(T )|/∆T that

v(T )− v(T −∆T )

∆T
∈ |∇v(T )|∇ ·

(

A(T,∆T, v)
∇v(T )

|∇v(T )|

)

, (9)

where

A(T,∆T, v) := 1− ∆T

2

(v(T )− v(T −∆T ))2

(∆T )2
1

|∇v(T )|2 .

Taking ∆T → 0+ and considering dv
dt (T ) = lim∆T→0+

v(T )−v(T−∆T )
∆T , we re-

cover (4).
For the regularization functional (3), if J is convex, there exists a unique min-

imizer of the associated regularization functional. Here this is no longer trivial
and is a first step of an analysis.

3 Minimizers of Non-Convex Energy Functionals

In this section we prove existence of a minimizer of the functional

I(u) :=

∫

Ω

(

u(x)− u0(x)
)2

2|∇u(x)| dx+ α|Du|(Ω) (α > 0) . (10)

Here Ω is a bounded domain with Lipschitz boundary and |Du|(Ω) denotes the
total variation semi-norm. By Du we denote the distributional derivative of u,
which is a Radon measure on Ω. Thus we can use the Lebesgue decomposition
Du = ∇u dx+Dsu, where ∇u ∈ L1(Ω) denotes the absolutely continuous part
of Du and Dsu is the singular part (cf. Rudin [19])1. In (10) we define

(

u(x)− u0(x)
)2

2|∇u(x)| := 0 if u(x) = u0(x) .

Minimization of the functional I is considered over the space BV(Ω), the space
of functions of bounded variation (cf. Evans & Gariepy [16] or Ambrosio & Fusco
& Pallara [17]). There are two major difficulties associated with the functional:

1 We follow the terminology of Ambrosio & Fusco & Pallara [17] and call Dsu the
singular part. Other publications denote by Dsu the jump part of the distributional
gradient, which belongs to discontinuities in the function u. In particular, in this
paper Dsu also contains the Cantor part of u
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1. For a convex function g and a measure m the functional J(m) =
∫

Ω
g
(

m(x)
)

is well-defined (see e.g. Temam [18]). Here, this theory is not applicable,
since the functional I is non-convex with respect to the measure Du, the
derivative of the function u ∈ BV (Ω).

2. The functional I is not lower semi-continuous with respect to the weak∗

topology on BV(Ω), and compensated compactness arguments are not ap-
plicable to prove existence of a minimizer.

A standard approach to obtain a meaningful interpretation of I is via relaxation
(cf. [20]). For a functional J : X → R ∪ {∞} and ∅ 6= X ⊆ BV(Ω), and
u ∈ BV(Ω) its relaxation is defined by

R(J,X)(u) :=

{

+∞ if u /∈ X ∩ BV(Ω)
inf
{

lim infk→∞ J(u(k)) : {u(k)} ⊂ X, ‖u(k) − u‖L1(Ω) → 0
}(11)

Here X is the closure of X with respect to the L1(Ω)-norm. In order to simplify
the notation we define R(I) := R

(

I,BV(Ω)
)

. In the following we show that
R(I) attains a minimizer that can be considered a generalized minimizer of I.

Theorem 1. Let u0 ∈ L∞(Ω), then the functional R(I) attains a minimizer in
BV(Ω) that can be considered a generalized minimizer of I, i.e., if the minimum
of I is attained in u ∈ BV(Ω), then u is a minimizer of R(I).

Proof. The functional R(I) is lower semi-continuous with respect to the L1-
topology on BV(Ω), coercive, and proper (i.e.,R(I) 6≡ ∞). Thus it attains a min-
imizer in BV(Ω). To see that R(I) is proper take u(x) = x1 if x = (x1, . . . , xn).
Then |∇u(x)| = 1. Thus, I(u) < ∞ and consequently R(I) < ∞ showing that
R(I) is proper. The coercivity assertion follows from the characterization of
R(u) given in Theorem 2. To show that each minimizer of I is a minimizer of
R(I) we take c := inf{I(u)}. The definition of the relaxed functional implies
that inf{R(I)(u)} ≥ c . Since I attains the minimum value c, we also have that
R(I)(u) ≤ c by using the constant sequence {u} in the right hand side of (11).

We now turn to characterizing the relaxed functional.

Theorem 2. If u0 ∈ L∞(Ω), then

R(I)(u) = Ic(u) :=

∫

Ω

fc
(

x, u(x),∇u(x)
)

dx+α|Dsu|(Ω) (u ∈ BV(Ω)) . (12)

Here Du = ∇u dx + Dsu is the Lebesgue decomposition of the distributional
gradient of u and

fc(x, ξ, A) :=











(

ξ − u0(x)
)2

2|A| + α|A| , if
√
2α|A| > |ξ − u0(x)| .

√
2α|ξ − u0(x)| , if

√
2α|A| ≤ |ξ − u0(x)|

(13)

Before we prove this theorem, we require some properties of the function fc,
which are summarized in the following lemma:
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Lemma 1. Let u0 ∈ L∞(Ω). For almost every x ∈ Ω

(a) fc(x, ·, ·) is convex,
(b) fc(x, ·, ·) is continuously differentiable in every point (ξ, A) 6=

(

u0(x), 0
)

.

Proof. For x ∈ Ω let U1 := {(ξ, A) :
√
2α|A| < |ξ − u0(x)|} and U2 := {(ξ, A) :√

2α|A| > |ξ − u0(x)|}. For (ξ, A) ∈ U1 we have

∇fc(x, ξ, A) := ∇ξ,Afc(x, ξ, A) =
(√

2α sgn
(

ξ − u0(x)
)

, 0
)

,

and for (ξ, A) ∈ U2 we have

∇fc(x, ξ, A) =

(

ξ − u0(x)

|A| ,

(

α−
(

ξ − u0(x)
)2

2|A|2

)

A

|A|

)

.

For
√
2α|A|−|ξ−u0(x)| → 0 both gradients coincide, and thus fc is continuously

differentiable. Obviously fc(x, ·, ·) is convex on U1. Since the Hessian of f(x, ·, ·)
is positive definite, fc(x, ·, ·) is convex on U2. From [21, Sec. 42, Thm. B] it
follows that the differentiable function fc is convex, iff ∇fc is monotone, i.e.,
(

∇fc(x, ξ, A) − ∇fc(x, ζ,B)
)

·
(

(ξ, A) − (ζ,B)
)

≥ 0 for all (ξ, A), (ζ,B). Since
fc is continuously differentiable and monotone on int(U1) and int(U2) it follows
that ∇fc is monotone on int(Ū1 ∪ Ū2) = R× R

n, which shows the convexity of
fc.

From Lemma 1 it follows that the operator
∫

Ω
fc(x, u(x), v(x)) dx is well-defined

for u, v ∈ L1(Ω) ×
(

L1(Ω)
)n

. In particular
∫

Ω
fc(x, u(x),∇u(x)) dx is well-

defined, if u ∈ L1(Ω) and ∇u is the absolutely continuous part of Du.

Proof ( of Theorem 2). Let

I∗(u) :=

{

∫

Ω
f
(

x, u(x),∇u(x)
)

dx for u ∈ W 1,1(Ω) ,

+∞ else.

It is immediate that I(u) ≤ I∗(u), and since fc ≤ f we also have Ic(u) ≤ I(u).
Consequently, it follows that

R(Ic)(u) ≤ R(I)(u) ≤ R(I∗)(u) . (14)

Therefore, to prove the assertion of this theorem, it suffices to show thatR(I∗)(u) =
Ic(u) . Since I∗(u) = +∞ for u /∈ W 1,1(Ω), we have

R(I∗)(u) = R
(

I∗,W 1,1(Ω)
)

(u) .

Every u ∈ BV(Ω) can be approximated by a sequence {u(k)}k∈N ⊂ W 1,1(Ω)
satisfying ‖u(k) −u‖L1(Ω) → 0. Moreover, from the definition of R(I∗) it follows

that for every k ∈ N there exists ũ(k) ∈ W 1,1(Ω) satisfying ‖ũ(k) − u(k)‖L1(Ω) ≤
1/k and

R(I∗)(u(k)) ≥ I(ũ(k))− 1/k . (15)
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For u ∈ W 1,1(Ω) it follows from the general results in [22] that

R(I∗)(u) = R
(

I∗,W 1,1(Ω)
)

(u) = Ic(u) . (16)

From (15), (16), and the fact that ‖ũ(k) − u‖L1(Ω) → 0, it follows that

R(I∗)(u) ≤ lim inf
k→∞

I∗(ũ(k)) = lim inf
k→∞

I(ũ(k)) ≤

≤ lim inf
k→∞

R(I∗)(u(k)) = lim inf
k→∞

Ic(u
(k)) .

Thus, R(I∗)(u) = R
(

Ic;W
1,1(Ω)

)

(u) for u ∈ BV(Ω). We note that for u ∈
BV(Ω)∩L∞(Ω) and ε > 0, we may choose a sequence u(k) ∈ W 1,1(Ω) satisfying
Ic(u

(k)) → R(I∗)(u), which satisfies ‖u(k)‖L∞ < ‖u‖L∞ + ε for all k ∈ N. In
other words, setting Xr := {u ∈ BV(Ω) : ‖u‖L∞ < r} we have

R(I∗)(u) = R
(

Ic;X
r ∩W 1,1(Ω)

)

(u) for u ∈ Xr . (17)

For r > 0 and u ∈ W 1,∞(Ω) let

fr(x, ξ, A) :=











(

ξ − u0(x)
)2 ∧ r2

2|A| + α|A| , if
√
2α|A| > |ξ − u0(x)| ∧ r ,

√
2α
(

|ξ − u0(x)| ∧ r
)

, if
√
2α|A| ≤ |ξ − u0(x)| ∧ r ,

and

Irc (u) :=

∫

Ω

fr
(

x, u(x),∇u(x)
)

dx .

Here a ∧ b, a ∨ b denote the minimum, maximum of a and b, respectively. Since
‖u0‖L∞ =: r0 < ∞ it follows that for every u ∈ BV(Ω) satisfying ‖u‖L∞ < r−r0
we have Ic(u) = Irc (u). Thus, from (17) we find that for u ∈ Xr−r0

R(I∗)(u) = R
(

Irc ;X
r ∩W 1,1(Ω)

)

(u) .

Using [23, Thm. 4.1.4] it follows that for u ∈ Xr−r0 we have

R(I∗)(u) =

∫

Ω

fr
(

x, u(x),∇u(x)
)

dx+ |Dsu|(Ω) = Ic(u).

Using [24, Prop. 2.4] it follows that for every u ∈ BV(Ω)

R(I∗)(u) = lim
r→+∞

R(I∗)
(

(u ∧ r) ∨ −r
)

= lim
r→∞

Ic
(

(u ∧ r) ∨ −r
)

.

From this and the monotone convergence theorem (see e.g. [16]) the assertion
follows. ⊓⊔

We recall that the assumption u0 ∈ L∞(Ω) is needed in order to satisfy the
growth conditions required in [23]. The functional R(I) is coercive with respect
to the total variation semi-norm. It can be shown by a truncation argument that
there exists a minimizer of R(I) with L∞-norm less than ‖u0‖L∞(Ω). Thus the
functional attains a minimizer u in BV.

We note that convexification of non-convex functionals on BV is a recent
research topic. We mention the papers [23, 25–27].
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4 Numerics

We describe a finite element method for minimization of the functional R(I)(u).
We use M := (n−1)× (m−1) quadratic finite elements (Qi)i=1,...,M to cover Ω
and bilinear basis functions (φj)j=1,...N :=n×m which are centered at the corner
points of the finite elements. We denote by Q := span{Qi : i = 1, . . . ,M}. The
initial data u0 is given as discrete values on a rectangular grid of size n×m and
is identified with the function u0 =

∑N
i=1 u

0
iφi.

The minimizer uNCBV (non-convex bounded variation) of the functional R(I)
solves the optimality condition ∂R(I)(uNCBV) = 0, where ∂R(I) is the subgra-
dient of R(I). In the weak form the optimality condition reads as

u− u0

|∇u| φj +

(

α− (u− u0)2

2|∇u|2
) ∇u∇φj

|∇u| = 0 if
√
2α|∇u| > |u− u0| ,

√
2α

u− u0

|u− u0|φj = 0 if
√
2α|∇u| ≤ |u− u0| ,

(18)

where j = 1, . . . , N . The second equation implies that if
√
2α|∇u| ≤ |u−u0|, then

u(x) = u0(x), from which it follows that |∇u(x)| = 0. With the abbreviation

a(u) =
1

|∇u| ∧
√
2α

|u− u0| , b(u) =

((

α− |u− u0|2
2|∇u|2

)

∨ 0

)

1

|∇u|

equation (18) reads as follows

N
∑

i=1

∫

Ω

a(u)φiφj ui + b(u)∇φi∇φjui =

∫

Ω

a(u)φiφju
0
i (j = 1, . . . , N) . (19)

Let U := (u1, . . . , uN )T , U0 := (u0
1, . . . , u

0
N )T ,

Mij :=

∫

Ω

φiφj and Lij :=

∫

Ω

∇φi∇φj .

We approximate a(u) and b(u) by elementwise constant functions ã(U) and b̃(U).
Using this notation and these approximations, (18) reads as

(

ã(UNCBV)M + b̃(UNCBV)L
)

UNCBV = ã(UNCBV)M U0 . (20)

This system is solved applying the fixed point iteration:

ã(U
(s)
NCBV)M U

(s+1)
NCBV + b̃(U

(s)
NCBV)LU

(s+1)
NCBV

= ã(U
(s)
NCBV)M U0

NCBV (s = 0, 1, 2, . . .) . (21)

The iteration is terminated if a given tolerance tol is reached, i.e., if |U (s+1)
NCBV−

U
(s)
NCBV| ≤ tol or s exceeds a given limit. In each iteration step, for solving the
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linear system for U
(s+1)
NCBV we use the C(onjugate)G(radient)-method. In order

to avoid occurring oscillations, the following modified scheme can be used: For
s = 0, 1, 2, . . ., solve

ã(U
(s)
NCBV)M U

(∗)
NCBV + b̃(U

(s)
NCBV)LU

(∗)
NCBV = M U

(s)
NCBV (22)

due to the unknown function U
(∗)
NCBV and using the solution set

U
(s+1)
NCBV = U

(s)
NCBV + δs (U∗

NCBV − U
(s)
NCBV) (s = 0, 1, 2, . . .) , (23)

where 0 < δs ≤ 1 tends to zero for increasing s.

5 Results

In this section we show that the iterated solution of R(I) gives similar results
as solving the MCM equation. We show that v(T ), the solution of the MCM
equation and uN

N are almost identical. We recall that uN
k is the minimizer of the

functional R(I) where u0 is replaced by uN
k−1, k = 1, . . . ,N and α = T/N .

The MCM equation at time T = ∆T Ñ is calculated by solving the system
of equations (note that ∆T needs not be identical to α)

c̃(UMCM)(M +∆T L)UMCM = c̃(UMCM)MUk−1
MCM (k = 1, . . . , Ñ ) (24)

and denoting the solution by Uk
MCM. A vector UMCM is associated with the

function uMCM =
∑N

i=1(UMCM)iφi from which an approximation c̃(UMCM) for
c(u) = 1

|∇u| is determined that is piecewise constant on the finite elements.

I.e., c̃(UMCM)|Qij
= c(uMCM)(pij), where pij is the midpoint of cell Qij . The

implemented FE-Method for solving the Mean Curvature Motion essentially fol-
lows [28].

For fixed k, we again use a fixed point iteration to solve (24):

c̃(U
(s)
MCM)(M +∆T L)U

(s+1)
MCM = c̃(U

(s)
MCM)MUk

MCM (s = 0, 1, . . .) . (25)

If ‖U (s+1)
MCM − U

(s)
MCM‖ < tol the iteration is terminated and Uk+1

MCM := U
(s+1)
MCM .

In the following we present two numerical comparisons of regularization, i.e.,
minimizing the functional (10), iterative regularization, and solving the MCM
equation (4).

In the first numerical experiment we have calculated the solution of the MCM
equation at time T = 20. We use a step length ∆T = 0.25. The iterative
regularization has been implemented with α = T/N and varying parameters
N = 2, 10, 20, 40. The comparison shows the original image, MCM filtered im-
age and the iterated regularized solution uN for various parameters N . As N
increases, iterative regularization approximates the solution of the MCM equa-
tion. The second example is a comparison between MCM and regularization,
i.e., we compare the solution of the MCM equation at time T = 10, 50, 100, 300
with u1, i.e., the minimizer of (5) with α = 10, 50, 100, 300.
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Fig. 1. Top Left: Original data, Top Right: Solution of the Mean Curvature equation
at time T = 20. Iterative Regularization. Images show uN

N . N = 2(α = 10) (Middle
Left Column), N = 10(α = 2) (Middle Right Column), N = 20(α = 1) (Bottom Left
Column), N = 40(α = 0.5) (Bottom Right Column).

6 Conclusion

In this paper we have generalized the concept of gradient flow equations with
subdifferentials of convex functionals to non-convex functionals. The general idea
is to approximate an evolution process by a sequence of minimizers of iteratively
convexified energy (regularization) functionals. Although there is no mathemat-
ical theory for “non-convex” gradient flow equations, the results in this paper
show the similar filtering behavior. The results of this paper have been formu-
lated exemplarily for the Mean Curvature equation but can be generalized to
other well known equations in morphological image analysis, such as the affine
invariant Mean Curvature equation (cf. [10]). For gradient flow equations with
subdifferential of a convex functional it has been observed recently that both

10



Fig. 2. Top: solution of MCM equation at T = 10, 50, 100, 300 and Bottom: u1, the
minimizer of (5), with α = 10, 50, 100, 300.

diffusion filtering and associated regularization models provide similar filtering
properties. Here this analogy has been shown for the Mean Curvature Flow
equation and the associated non-convex energy formulation.
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