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Abstract

The implicit convex feasibility problem attempts to find a point
in the intersection of a finite family of convex sets, some of which
are not explicitly determined but may vary. We develop simultaneous
and sequential projection methods capable of handling such problems
and demonstrate their applicability to image denoising in a specific
medical imaging situation. By allowing the variable sets to undergo
scaling, shifting and rotation, this work generalizes previous results
wherein the implicit convex feasibility problem was used for coopera-
tive wireless sensor network positioning where sets are balls and their
centers were implicit.

Keywords: Implicit convex feasibility · split feasibility · projec-
tion methods · variable sets · proximity function · image denoising
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1 Introduction

In this paper we are concerned with the following “implicit convex feasibility
problem” (ICFP). Given set-valued mappings Cs : Rn → 2Rn

, s = 1, 2, . . . , S,
with closed and convex value sets, the ICFP is,

Find a point x∗ ∈ ∩Ss=1Cs(x
∗). (1.1)

We call the sets Cs(x) “variable sets” for obvious reasons and include
“implicit” in this problem name because the sets defining it are not given
explicitly ahead of time. The problem is inspired by the work of Gholami
et al. [21] on solving the cooperative wireless sensor network positioning
problem in R2 (Rn). There, the sets Cs(x) are circles (balls) with varying
centers. A special instance of the ICFP is obtained by taking fixed sets
Cs(x) ≡ Cs, for all x ∈ Rn, and all s = 1, 2, . . . , S, yielding the well-known,
see, e.g., [3], “convex feasibility problem” (CFP) which is,

Find a point x∗ ∈ ∩Ss=1Cs. (1.2)

The CFP formalism is at the core of the modeling of many inverse prob-
lems in various areas of mathematics and the physical sciences. This prob-
lem has been widely explored and researched in the last decades, see, e.g.,
[10, Section 1.3], and many iterative methods where proposed, in particular
projection methods, see, e.g., [11]. These are iterative algorithms that use
projections onto sets, relying on the principle that when a family of sets is
present, then projections onto the given individual sets are easier to perform
than projections onto other sets (intersections, image sets under some trans-
formation, etc.) that are derived from the given individual sets.

Gholami et al. in [21] introduced the implicit convex feasibility problem
(ICFP) in Rd (d = 2 or d = 3) into their study of the wireless sensor net-
work (WSN) positioning problem. In their reformulation the variable sets
are circles or balls whose centers represent the sensors’ locations and their
broadcasting range is represented as the radii. Some of these centers are
known a priori while the rest are unknown and need to be determined. The
WSN positioning problem is to find a point, in an appropriate product space,
which represents the circles or balls centers. The precise relationship between
the WSN problem and the ICFP can be found in [21, Section B]. For more
details and other examples of geometric positioning problems, see [20, 22].
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We focus on the ICFP in Rn and present projection methods for its solu-
tion. This expands and generalizes the special case treated in Gholami et al.
[21]. Moreover, we demonstrate the applicability of our approach to the task
of image denoising, where we impose constraints on the image intensity at
every image pixel. Because the constraint sets depend on the unknown vari-
ables to be determined, the method is able to adapt to the image contents.
This application demonstrates the usefulness of the ICFP approach to image
processing.

The paper is structured as follows. In Section 2 we show how to calculate
projections onto variable sets. In Section 3 we present two projection type
algorithmic schemes for solving the ICFP, sequential and simultaneous, along
with their convergence proofs. In Section 4 we present the ICFP application
to image denoising together with numerical visualization of the performance
of the methods. Finally, in Section 5 we discuss further research directions
and propose a further generalization of the ICFP.

2 Projections onto variable convex sets

We begin by recalling the split convex feasibility problem (SCFP) and the
constrained multiple-set split convex feasibility problem (CMSSCFP) that
will be useful to our subsequent analysis.

Problem 2.1 Censor and Elfving [13]. Given nonempty, closed and convex
sets C ⊆ Rn, Q ⊆ Rm and a linear operator T : Rn → Rm, the Split

Convex Feasibility Problem (SCFP) is:

Find a point x∗ ∈ C such that T (x∗) ∈ Q. (2.1)

Another related more general problem is the following.

Problem 2.2 Masad and Reich [31]. Let r, p ∈ N and Ωs, 1 ≤ s ≤ S, and
Qr, 1 ≤ r ≤ R, be nonempty, closed and convex subsets of Rn and Rm, re-
spectively. Given linear operators Tr : Rn → Rm, 1 ≤ r ≤ R and another
nonempty, closed and convex Γ ⊆ Rn, the Constrained Multiple-Set

Split Convex Feasibility Problem (CMSSCFP) is:

Find a point x∗ ∈ Γ such that

x∗ ∈ ∩Ss=1Ωs and Tr(x
∗) ∈ Qr for each r = 1, 2, . . . , R. (2.2)
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If Tr ≡ T for all r = 1, 2, . . . , R, then we obtain a multiple-set split convex
feasibility problem (MSSCFP) [14].

A prototype for the above SCFP and MSSCFP is the Split Inverse
Problem (SIP) presented in [8, 15] and given next.

Problem 2.3 Given two vector spaces X and Y and a linear operator A :
X → Y , we look at two inverse problems. One, denoted by IP1, is formu-
lated in X and the second, denoted by IP2, is formulated in Y . The Split

Inverse Problem (SIP) is:

Find a point x∗ ∈ X that solves IP1such that y∗ = Ax∗solves IP2. (2.3)

In [8, 15] different choices for IP1 and IP2 are proposed, such as variational
inequalities and minimization problems. The latter enable, for example,
to obtain a least-intensity feasible solution in intensity-modulated radiation
therapy (IMRT) treatment planning as in [39]. In [23] we further explore and
extend this modeling technique to include non-linear mappings between the
two spaces X and Y .

Let C ⊆ Rn be a nonempty, closed and convex set. For each point x ∈ Rn,
there exists a unique nearest point in C, denoted by PC(x), i.e.,

‖x− PC (x)‖ ≤ ‖x− y‖ , for all y ∈ C. (2.4)

The mapping PC : Rn → C is the metric projection of Rn onto C. It is
well-known that PC is a nonexpansive mapping of Rn onto C, i.e.,

‖PC (x)− PC (y)‖ ≤ ‖x− y‖ , for all x, y ∈ Rn. (2.5)

The metric projection PC is characterized by the following two properties:

PC(x) ∈ C (2.6)

and
〈x− PC (x) , y − PC (x)〉 ≤ 0, for all x ∈ Rn, y ∈ C. (2.7)

If C is a hyperplane, then (2.7) becomes an equality, [24]. We are dealing
with variable convex sets that can be described by set-valued mappings.

Definition 2.4 For a set-valued mapping C : Rn → 2Rn
, we call the sets

C(x) ⊆ Rn, defined below, “variable sets”. Let Ω ⊆ Rn be a given set, called
in the sequel a “core set”.
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(i) Given an operator µ : Rn → Rn, the variable sets C(x) := Ω +µ(x) =
{y + µ(x) | y ∈ Ω} , for x ∈ Rn, are obtained from shifting Ω by the vectors
µ(x).

(ii) Given an x ∈ Rn let U[x] : Rn → Rn be a linear bounded operator.
The variable sets C(x) := U[x](Ω) =

{
U[x]y | y ∈ Ω

}
are the U[x] images of Ω.

(iii) Given a function f : Rn → R+, the variable sets C(x) := f(x)Ω =
{f(x)y | y ∈ Ω} , for x ∈ Rn, are obtained from scaling Ω uniformly by f(x).
This can be re-written as in (ii) with U[x] = f(x)I, where I is the identity
matrix.

Next we present a lemma that shows how to calculate the metric pro-
jection onto such variable sets via projections onto the core set Ω when the
operator µ is linear and denoted by the fixed matrix A and U[x] is a constant
unitary matrix denoted by U (that is UTU = UUT = I, where UT : Rn → Rn

is the adjoint of U). Our proofs are based on Cegielski [10, Subsection 1.2.3].

Lemma 2.5 Let Ω ⊆ Rn be a nonempty, closed and convex core set. Given
a matrix A, a positive diagonal matrix D = αI, α > 0, and a fixed unitary
matrix U , the following holds for any z, x ∈ Rn

PDU(Ω)+Ax (z) = DUPΩ

(
D−1UT (z − Ax)

)
+ Ax. (2.8)

Since D is a positive diagonal matrix, this can be re-written as

PC(x) (z) = αUPΩ

(
1

α
UT (z − Ax)

)
+ Ax (2.9)

where C(x) = αU (Ω) + Ax.

Proof. Let z ∈ Rn and denote

y := αUPΩ

(
1

α
UT (z − Ax)

)
+ Ax. (2.10)

We show that
y = PC(x) (z) . (2.11)

From (2.10) and the unitary matrix U we deduce

1

α
UT (y − Ax) = PΩ

(
1

α
UT (z − Ax)

)
. (2.12)
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By the characterization of the metric projection onto Ω (2.7) we have

〈
1

α
UT (z − Ax)− 1

α
UT (y − Ax) , w − 1

α
UT (y − Ax)

〉
≤ 0, for all w ∈ Ω.

(2.13)
Since α > 0 and U is unitary, we get

〈z − y, αUw + Ax− y〉 ≤ 0, for all w ∈ Ω. (2.14)

Denoting v := αUw + Ax, since w ∈ Ω we get v ∈ αU (Ω) + Ax = C(x),
the

〈z − y, v − y〉 ≤ 0, for all v ∈ C(x), (2.15)

and again by the characterization of the metric projection onto C(x) (2.7)
and by (2.10) y = PC(x) (z) which completes the proof.

Figure 1: Illustration of Lemma 2.5 with D,U = I
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Figure 2: Illustration of Lemma 2.5 with D = I and A = 0

Two special cases of Lemma 2.5 are illustrated. In Figure 1 we use D,U =
I so that PΩ+Ax (z) = PΩ (z − Ax) + Ax, meaning that the set Ω is shifted
by the point Ax to Ω + Ax. In Figure 2 we use D = I and A = 0 so that
PU(Ω) (z) = UPΩ

(
UT z

)
, meaning that the set Ω is rotated by the unitary

matrix U to U (Ω).
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3 The algorithms

The following definitions will be used.

Definition 3.1 A sequence {σk}k∈N of real positive numbers is called a steering

sequence if it satisfies all the following conditions: (i) limk→∞ σk = 0; (ii)

limk→∞
σk+1
σk = 1; and (iii)

∑∞
k=0 σk = +∞. Let β be a positive integer. If

condition (ii) is replaced by

lim
k→∞

σkβ+j

σkβ
= 1, for all 1 ≤ j ≤ β − 1, (3.1)

and (i) and (iii) remain unchanged then the sequence is called an β-steering
sequence.

Definition 3.2 A sequence {i(k)}k∈N of indices is called a cyclic control

sequence over the index set {1, 2, . . . , S} if

i(k) = kmodS, for k ≥ 0. (3.2)

Problem 3.3 The Implicit Convex Feasibility Problem. Given set-
valued mappings Cs : Rn → 2Rn

, s = 1, 2, . . . , S, with closed convex values
Cs(x), the Implicit Convex Feasibility Problem (ICFP) is

Find a point x∗ ∈ ∩Ss=1Cs(x
∗). (3.3)

One way of handling this problem is to reformulate it as the unconstrained
minimization {

minimize Gicfp(x)
subject to x ∈ Rn,

(3.4)

where

Gicfp(x) :=
1

2

S∑
s=1

‖x− PCs(x)(x)‖2 (3.5)

in which PCs(x) is the metric projection operator onto the sets Cs(x).
Following the works of Censor et al. [12] and Gholami et al. [21] we

present two algorithmic schemes, simultaneous and sequential, for solving
the ICFP of Problem 3.3. For s = 1, 2, . . . , S, let Ωs be nonempty, closed
and convex core sets in Rn, As ∈ Rn×n are matrices, Us ∈ Rn×n are unitary
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matrices, and αs > 0. Then the variable sets defined in Definition 2.4 take
the form

Cs(x) = αsUs (Ωs) + Asx, (3.6)

and we assume that the projection PΩs are at hand or can be easily calculated.

Algorithm 3.4 The Simultaneous Algorithm
Preliminary calculations: For s = 1, 2, . . . , S, calculate the matrices

Ks :=
1

αs
UT
s (I − As) (3.7)

and use matrix 2-norms to calculate the constant

Licfp =
S∑
s=1

‖I − As‖2
2 . (3.8)

Initialization: Select an arbitrary starting point x0 ∈ Rn and set k = 0.

Iterative step: Given the current iterate xk, calculate the next iterate
by

xk+1 = xk − γk
S∑
s=1

α2
sK

T
s (I − PΩs)

(
Ksx

k
)
, (3.9)

where γk ∈ (0, 2/Licfp) for all k ≥ 0.

Stopping rule: If xk+1 = xk (or, alternatively, if ‖xk+1 − xk‖ is small
enough) then stop. Otherwise, set k ← (k + 1) and go back to the beginning
of the iterative step.

Algorithm 3.5 The Sequential Algorithm
Preliminary calculation: For s = 1, 2, . . . , S, calculate the matrices

Ks :=
1

αs
UT
s (I − As) . (3.10)

Initialization: Select an arbitrary starting point x0 ∈ Rn and set k = 0.

Iterative step: Given the current iterate xk, calculate the next iterate
by

xk+1 = xk − σkα2
i(k)K

T
i(k)

(
I − PΩi(k)

) (
Ki(k)x

k
)
, (3.11)
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where {σk}k∈N and {i(k)}k∈N are a β-steering and a cyclic control sequences,
respectively.

Stopping rule: If xk+1 = xk (or, alternatively, if ‖xk+1 − xk‖ is small
enough) then stop. Otherwise, set k ← (k + 1) and go back to the beginning
of the iterative step.

3.1 Convergence

For the mappings Cs(·) of (3.6) we get, from Lemma 2.5, a simplified form
of the proximity function Gicfp in (3.5),

Gicfp(x) =
1

2

S∑
s=1

∥∥∥∥x− (αsUsPΩs

(
1

αs
UT
s (x− Asx)

)
+ Asx

)∥∥∥∥2

=
1

2

S∑
s=1

∥∥∥∥αsUs (I − PΩs)

(
1

αs
UT
s (I − As)x

)∥∥∥∥2

=
1

2

S∑
s=1

α2
s

∥∥∥∥(I − PΩs)

(
1

αs
UT
s (I − As)x

)∥∥∥∥2

=
1

2

S∑
s=1

α2
s ‖(I − PΩs) (Ksx)‖2 , (3.12)

where Ks is as in (3.7).

In order to prove convergence of Algorithm 3.4 we need to show that
the function Gicfp is convex, continuously differentiable and that its gradi-
ent is Lipschitz continuous (see [21, Proposition 4]). For the convergence of
Algorithm 3.5 it is sufficient to show only convexity and continuous differen-
tiability of Gicfp, see [12, Theorem 6]. In both cases our analysis relies on
the classical theorems of Baillon and Haddad [2] and of Dolidze [18].

Proposition 3.6 The function Gicfp of (3.12) is (1) convex, (2) continu-
ously differentiable, and (3) its gradient is Lipschitz continuous.

Proof. Recall that the SCFP (2.1) can also be formulated as the mini-
mization problem{

minimize Gscfp(x) := 1
2
‖Tx− PQ (Tx)‖2

subject to x ∈ C, (3.13)
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see, e.g., [7], and, moreover, for the CMSSCFP (2.2) we have{
minimize Gcmsscfp(x) := 1

2

∑S
s=1 ‖x− PΩs (x)‖2 + 1

2

∑R
r=1 ‖Trx− PQr (Trx)‖2

subject to x ∈ Γ,
(3.14)

see [31]. Since our proximity function Gicfp (3.12) shares some common
features with the above Gscfp and Gcmsscfp functions, we follow the lines of
[31] and [21, Theorem 2] to prove the proposition.

(1) The convexity of Gicfp (3.12) is obvious, see, for example [31, Lemma
2].

(2) Since
∇Gscfp(x) = T T (I − PQ) (Tx) (3.15)

(T T is the transpose of T ) we deduce that

∇Gicfp(x) =
S∑
s=1

α2
sK

T
s (I − PΩs) (Ksx) , (3.16)

where KT
s = (1/αs)

(
I − ATs

)
Us, and continuous differentiability follows.

(3) To show that ∇Gicfp is Lipschitz continuous, that is

‖∇Gicfp(x)−∇Gicfp(y)‖ ≤ Licfp ‖x− y‖ , for all x, y ∈ Rn, (3.17)

we write

∇Gicfp(x)−∇Gicfp(y) =
S∑
s=1

α2
sK

T
s (I − PΩs) (Ksx)−

S∑
s=1

α2
sK

T
s (I − PΩs) (Ksy)

=
S∑
s=1

α2
sK

T
s (I − PΩs) (Ksx−Ksy) . (3.18)

The firm-nonexpansivity of the projection operator, see, e.g., [10, Definion
2.2.1] along with the triangle and the Cauchy–Schwarz inequalities imply

‖∇Gicfp(x)−∇Gicfp(y)‖ =

∥∥∥∥∥
S∑
s=1

α2
sK

T
s (I − PΩs) (Ksx−Ksy)

∥∥∥∥∥
≤

S∑
s=1

α2
s

∥∥KT
s

∥∥
2
‖Ks‖2 ‖x− y‖

=
S∑
s=1

α2
s

∥∥KT
s Ks

∥∥
2
‖x− y‖ . (3.19)
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Calculating

KT
s Ks =

1

α2
s

(
I − ATs

)
UsU

T
s (I − As)

=
1

α2
s

(
I − ATs

)
(I − As) =

1

α2
s

(I − As)T (I − As) (3.20)

we obtain ∥∥KT
s Ks

∥∥
2

=

(
1

αs
‖I − As‖2

)2

, (3.21)

meaning that

‖∇Gicfp(x)−∇Gicfp(y)‖ ≤

(
S∑
s=1

‖I − As‖2
2

)
‖x− y‖ , (3.22)

so that ∇Gicfp is Lipschitz continuous with the Lipschitz constant Licfp =∑S
s=1 ‖I − As‖

2
2.

Theorem 3.7 For s = 1, 2, . . . , S, let Ωs be nonempty, closed and convex
core sets in Rn, As ∈ Rn×n are matrices, Us ∈ Rn×n are unitary matrices,
and αs > 0. If the solution set of the ICFP of Problem 3.3 is nonempty then
any sequence

{
xk
}∞
k=0

, generated by Algorithm 3.4, converges to a solution
x∗ of (3.3).

Proof. Proposition 3.6, guarantees that Gicfp is convex, continuously
differentiable, and its gradient is Lipschitz continuous, therefore Algorithm
3.4 is a gradient descent method for the unconstrained minimization prob-
lem (3.4) which solves the ICFP (3.3). For the complete proof see, e.g., [4,
Proposition 2.3.2].

Theorem 3.8 For s = 1, 2, . . . , S, let Ωs be nonempty, closed and convex
core sets in Rn, As ∈ Rn×n are matrices, Us ∈ Rn×n are unitary matrices,
and αs > 0. If the solution set of the ICFP of Problem 3.3 is nonempty and
any sequence

{
xk
}∞
k=0

generated by Algorithm 3.5 is bounded then
{
xk
}∞
k=0

converges to a solution x∗ of (3.3).

Proof. The function Gicfp can be written as

Gicfp(x) =
1

2

S∑
s=1

gs(x) (3.23)
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where gs(x) := α2
s ‖(I − PΩs) (Ksx)‖2 , for all s = 1, 2, . . . , S. By Proposition

3.6 each gs is convex and continuously differentiable, therefore Algorithm 3.5
is a special case of [12, Algorithm 5] and its convergence is guaranteed by
[12, Theorem 6].

Remark 3.9 1. Observe that the step size γk in the simultaneous projection
algorithm 3.4 is chosen in the interval (0, 2/Licfp) which requires the knowl-
edge of the matrix 2-norm. As remarked by one of the referees this kind of
step size might be inefficient from the numerical point of view. Several alter-
native step size strategies appear in [36, 30] and the references therein.

2. The ICFP of Problem 3.3 can be reformulated as an unconstrained min-
imization so that by applying first-order methods we get two different schemes
that generate sequences that converge to a solution of the ICFP of Problem
3.3. An alternative additional approach is to use the first-order optimality
condition in order to reformulate the ICFP of Problem 3.3 as a variational
inequality problem and derive other appropriate algorithmic schemes, such
as, Korpelevich’s extragradient method [26].

4 Application

4.1 Model description

In the following we introduce an approach for image denoising, which is
described in terms of an implicit convex feasibility problem. We provide
it as a specific instance of an ICFP rather than as a method of choice for
image denoising. Evaluating its practical advantages for image denoising is
a direction for future work.

Various methods have been proposed in the literature for image denois-
ing. These methods can roughly be divided into methods based on partial
differential equations like the edge-preserving Perona-Malik [9] model and
Weickert’s anisotropic diffusion [38], Wavelet based methods [16], non-local
iterative filtering [6], collaborative filtering such as BM3D [17] and variational
approaches [34]. Among the latter we find methods based on regularization
with the total variation (TV) semi-norm [33] and higher order expressions
[5, 35], which became popular and widely used. Recent trends include also
adaptive [1, 19, 27, 28] and non-local [25] TV methods.
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Below, we discuss an ansatz based on only prescribing constraints for
the pixel intensities, which leads to an ICFP. Since our ansatz with fixed
constraints (CFP) can be interpreted as a constrained optimization problem
with constant objective function, it is related to the variational approaches.
Allowing the constraints to vary depending on the solution of the problem,
such as the ICFP allows, introduces adaptivity.

We now turn to the description of the proposed ICFP. For simplicity, we
restrict ourselves to gray value images. We represent the image to be denoised
as a matrix Y = (yi,j) ∈ Rn1×n2 , where n1 and n2 are the width and height
of the image. The noisy data Y are obtained from an unknown noise-free
image represented by X∗ = (x∗i,j) ∈ Rn1×n2 through the relationship

yi,j = x∗i,j + ηi,j, (4.1)

where ηi,j ∈ Rn1×n2 are realizations of independent and identically distributed
Gaussian random variables with zero mean. We denote the denoised data Y
by X= (xi,j) ∈ Rn1×n2 , which forms our estimate of X∗.

For each pixel (i, j) we will impose S constraints on the gray level in-
tensity xi,j in terms of sets Ωi,j

s , s = 1, 2, . . . , S. Note that we index an
individual constraint set for an image location (i, j) by a subscript s, while
the superscripts refer to the location. We motivate a suitable choice for these
sets as follows. Let us consider a fixed pixel (i, j) in the interior of the im-
age together with its left and right neighbors yi−1,j and yi+1,j. In absence of
noise, if the image intensities vary smoothly, we can assume that yi,j is near
the linear interpolation of these two values, while in the case of strong noise
yi,j likely lies outside the range determined by yi−1,j and yi+1,j. Therefore, it
makes sense to impose the constraint

xi,j ∈ Ωi,j
1 := [min(yi+1,j, yi−1,j),max(yi+1,j, yi−1,j)] (4.2)

for the smoothed image X, where [a, b] denotes the closed interval between
a and b. To also cover the case of boundary pixels, we assume a constant
extension of the image outside the image domain, so that (4.2) is well-defined
for every (i, j).

We remark that there is a relation to TV regularization, since the total
variation of the discrete signal (min(yi+1,j, yi−1,j), xi,j,max(yi+1,j, yi−1,j)) is
minimal for xi,j ∈ Ωi,j

1 .
Analogously to (4.2) we define constraint sets for every horizontal, vertical

and diagonal edge of the underlying grid graph with vertices corresponding

14



to the pixel positions (i, j):

Ωi,j
2 := [min(yi,j+1, yi,j−1),max(yi,j+1, yi,j+1)],

Ωi,j
3 := [min(yi+1,j+1, yi−1,j−1),max(yi+1,j+1, yi−1,j−1)],

Ωi,j
4 := [min(yi+1,j−1, yi−1,j+1),max(yi+1,j−1, yi−1,j+1)].

(4.3)

In total, we end up with four different constraint sets for pixel (i, j).
Note that we can express each set Ωi,j

s in the form

Ωi,j
s = [−ri,js (Y ), ri,js (Y )] +mi,j

s (Y ), (4.4)

where

ri,j1 (Y ) =
1

2
|yi+1,j − yi−1,j|, mi,j

1 (Y ) =
1

2
(yi+1,j + yi−1,j), (4.5)

and ri,js (Y ), and mi,j
s (Y ), s = 2, 3, 4, defined accordingly for the vertical and

the two diagonal directions.
We further slightly generalize the sets Ωi,j

s by introducing a scaling factor
α > 0 and re-define

Ωi,j
s := α [−ri,js (Y ), ri,js (Y )] +mi,j

s (Y ), for s = 1, 2, 3, 4. (4.6)

Based on these local constraint sets, we look at the CFP

Find X= (xi,j) ∈ Rn1×n2 such that xi,j ∈
4⋂
s=1

Ωi,j
s for all pixels (i, j). (4.7)

Recall that our approach presented in Section 3 allows mi,j
s to depend on X,

in contrast with (4.7). So, we consider the set-valued mappings

Ci,j
s (X) := α [−ri,js (Y ), ri,js (Y )] +mi,j

s (X), (4.8)

and derive the ICFP

Find X ∈ Rn1×n2 such that X ∈
∏
i,j

(
4⋂
s=1

Ci,j
s (X)

)
, (4.9)

where
∏
i,j

represents the product of sets. Note that the variable sets Ci,j
s (X)

attain the form (3.6).
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4.2 Experiments

In our computational experiments we consider two test images. The Shepp-
Logan phantom of Figure 3(a), displayed with Gaussian noise of zero mean
and variance 0.1 in Figure 3(b), and an ultrasound image, displayed in Fig-
ure 3(c).

For the ICFP (4.9), we implemented both Algorithms 3.4 and Algo-
rithm 3.5. The parameters were chosen to be γk = 1

16
and 1000 iteration

steps for Algorithm 3.4 and σβk+j :=
1

k
for j = 0, 1, . . . , β and 1000 iteration

steps for Algorithm 3.5. If not noted otherwise, we use β = 100 for the latter.
We compared the performance of the CFP (4.7) with that of the ICFP

(4.9). For both problems we focused on the simultaneous projection method
of Algorithm 3.4, which is known to converge even in the inconsistent case
(i.e., the case where the intersection of constraint sets is empty), see, e.g,
[10, 32].

In Figure 3 we present results of comparing the CFP and ICFP approaches
on the noisy Shepp-Logan test image and on the ultrasound image that we
used. We also provide close-ups for a specific region of interest, in order to
highlight the differences mainly in texture. We observe that the CFP is not
suited to denoise the data. In contrast, solving the ICFP leads to a denoised
image.

In Figure 4 we study the influence of the parameter α in (4.8) for the
ICFP. Our experiments show, that this parameter influences the smoothness
of the result. The smaller α the smoother the result becomes.

In Figure 5, we plot the percentage of constraint sets ∩4
s=1C

i,j
s (xk), i =

1, 2, . . . , n1, j = 1, 2, . . . , n2, depending on the iteration index k for CFP and
ICFP, using both algorithms for the latter.

Note that in the CFP the constraint sets do not vary and, therefore,
we have a constant fraction of empty intersections, while in the ICFP we
observe that the number of empty intersections decreases significantly to
a final percentage of 3.5%, showing that the constraint sets adapt to the
unknown in a meaningful way.

We note that Algorithm 3.5 requires a β-steering sequence for conver-
gence. To demonstrate the influence of this sequence on the speed of con-
vergence we conduct an experiment with different values of β. Obviously
the choice of β influences the solution, to which the iterative sequence gen-
erated by the algorithm converges. We found that the results are of similar
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quality (the SSIM index proposed by Wang et al. [37] varies only in the
range 0.6802 ± 0.0001). Due to the non-uniqueness of the solution, we can
measure convergence only with respect to the individual solution the algo-
rithm converges to. To this end, we assume that the sequence converges
within the first 1000 steps. This assumption is satisfied, since the difference
‖Xk−1 − Xk‖ becomes small for k ≈ 1000. The plot in Figure 6 shows the
distances dk := ‖Xk − X1000‖ for β = 10, 20, 50, 100 during the first 1000
steps. We observe that the larger β is, the faster dk decreases. Thus, for a
faster convergence a larger value of β is advantageous.

We conclude that the proposed ICFP has the capability of denoising
image data. Although the approach in its current form cannot cope with
complex state-of-the-art denoising approaches, our experiments demonstrate
the usefulness of imposing constraints on image intensities. Moreover, we see
the potential for further improvements of the approach, for example by ad-
ditionally making the parameter α depend on the unknown, or by combining
the ICFP with an objective function for denoising, that has to be optimized
subject to the given adaptive constraints.
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Figure 3: Comparison of the results of the CFP (4.7) (d), (f) and the ICFP
(4.9) (e), (g) and close-ups (h)-(k) of the regions marked in white. From the
close-ups, we observe that the ICFP is better suited as a denoising method
than the CFP.
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(a) α = 1 (b) α = 0.1

Figure 4: Results for varying parameter α (cf. (4.8)). Observe that decreas-
ing α leads to a smoother image.
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Figure 5: Percentage of empty constraint sets ∩4
s=1C

i,j
s (X), i = 1, 2, . . . , n1,

j = 1, 2, . . . , n2 (inconsistent cases) with x varying during the iterations.
We compare the algorithm for the CFP (dash-dotted), and for ICFP Algo-
rithm 3.4 (dashed) and the sequential Algorithm 3.5 (solid). We observe,
that for the ICFP, the percentage significantly decreases during the itera-
tions, while for the CFP by definition it is constant.

Figure 6: Convergence for different β-steering sequences with β = 10 (black
solid), 20 (black dashed), 50 (gray solid) and 100 (gray dashed) in Algo-
rithm 3.5 applied for smoothing the phantom image. Note that the limit
depends on the chosen sequence. We depict ‖Xk−X1000‖, assuming conver-
gence within the first 1000 steps. We conclude that a larger β is advantageous
for a faster convergence.
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5 Summary and further discussion

In this paper we consider the implicit convex feasibility problem (ICFP)
where the variable sets are obtained by shifting, rotating and linearly-scaling
fixed, closed convex sets. By reformulating the problem as an unconstrained
minimization we present two algorithmic schemes for solving the problem,
one simultaneous and one sequential. We also comment that other first-
order methods can be applied if, for example, the problem is phrased as a
variational inequality problem. We illustrate the usefulness of the ICFP as
a new modeling technique for imposing constraints on image intensities in
image denoising.

Two instances of the ICFP, the wireless sensor network (WSN) position-
ing problem and the new image denoising approach suggest the applicability
potential of the ICFP. In this direction we recall the nonlinear multiple-sets
split feasibility problem (NMSSFP) introduced by Li et al. [29] and later by
Gibali et al. [23].

In this problem the linear operator T : Rn → Rm in the split convex feasi-
bility problem (2.1) is nonlinear and, therefore, the corresponding proximity
function is not necessarily convex which means that additional assumptions
on T are required, such as differentiability. Within this framework it will
be interesting to know, for example, what are the necessary assumptions
on m : Rn → Rn in Definition 2.4 which will guarantee convergence of our
proposed schemes.

Another direction is when the unitary matrices Us are not given in ad-
vance but generated via some procedure; for example, given a linear trans-
formation M : Rn → Rn×n, such that for all x ∈ Rn, M(x) = U[x] is a unitary
matrix. The linearity assumption on M will guarantee that our analysis here
will still hold true. For a nonlinear M our present analysis will not hold or,
at least, not directly hold.
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